PAGE
2

Introduction to C - Programming Assignment #5
Due date: Please consult WebCourses for your section
Objectives
1. To reinforce your knowledge of reading in data from files.

2. To utilize strings (character arrays) in C.
3. To learn how to design functions appropriately to solve a problem.
Problem: Hangman
Nearly everyone has played the childhood game of Hangman. You are given a puzzle with blanks (representing letters) and you guess a letter that might be in the puzzle. If it is, then each occurrence of the letter is placed on the board. If not, you get a point against you (which is usually drawing one portion of a stick-figure.) If you complete the puzzle before too many wrong guesses (this usually depends on how many parts there are to the stick-figure being drawn), then you win. If not, you lose. For our game, we won't draw any stick figures, but we'll simply keep track of how many incorrect guesses the user has made. In order to win, the user must uncover the phrase before they get 5 incorrect guesses.
For this game, all of the words to be guessed will have uppercase letters only. All of the possible puzzles will be read in from a file into a two-dimensional character array (array of strings). The code for this will be given to you in a separate file. You will have to call the given function only once in your program. From there, each time the user wants to play the game, you'll pick a different random word stored in the array of strings as the word for the puzzle. Note: All words are guaranteed to be 29 characters or fewer and the file is guaranteed to have 1000 words or fewer.
Input File Specification
You won't need to utilize this information since the function that reads from the file is given to you, but for the sake of completeness, here is the input file format:

The first line of the input file will contain a single positive integer n, representing the number of words in the file. The following n lines will contain one word each.
Input/Output Specification
At the beginning of the program, you should prompt the user to enter the name of the input file with all of the words for the game.
Then, you should ask the user if they want to play. If they do, choose a random puzzle, and present it to them with all the letters hidden represented by underscores and ask them what letter they want to choose. Separate each slot with a blank. Here is an example:

You currently have 0 incorrect guesses.

Here is your puzzle:

_ _ _ _

Please enter your guess.
After the user enters their guess, if the letter they guessed is in the puzzle and hasn't been guessed before, print out the following message:

Congratulations, you guessed a letter in the puzzle!

If the letter is NOT in the puzzle, print out the following message:

Sorry, that letter is NOT in the puzzle.

If the user has ALREADY guessed that letter, print out the following message:

Sorry, you have guessed that letter already.

Now it counts as a miss.

Once you've printed this out, continue to the next turn, prompting the user with the board again as described above.

If the user has 5 incorrect guesses, instead of reprompting them with the board, print out the following message:

Sorry, you have made 5 incorrect guesses, you lose.

The correct word was ____.

where ____ is the word for the round.

If the user fills in the entire word with the letters they guess before 5 incorrect guesses, print out the following message:

Congratuations! You got the correct word, ____.

where ____ is the word for the round.

After the round is over, prompt the user if they want to play again. If so, repeat the process described here.

Implementation Hints

Store two strings for the program: one which is the correct word, and the other which is what gets printed out to the user. For example, if the correct word was MALL, store the two following strings:

MALL

When the user guesses a letter, read it into a string and just access index 0 of that string to find the character they guessed. (This will make dealing with whitespace easier.)

Scan through the real word, checking to see if any of the letters equals the guessed letter. If so, replace the corresponding character (at the same index) in the other string. So, for example if A were guessed, the two strings would then look like:

MALL

_A__

To keep track of which letters have been guessed and which ones haven't, store an integer array of size 26 and initialize it to all 0s, indicating that no letter had been guessed. When a letter is chosen, go to the appropriate index and add 1 to the value stored there. For example, if the letter chosen is stored in guess[0], and the name of the array is chosen, we would do the following:
chosen[(int)(guess[0] – 'A')]++;

Since the ascii values are contiguous for capital letters, guess[0] – 'A' will equal a value from 0 to 25. It will equal the index which stores whether or not that letter has been guessed.

To detect if the puzzle has been guessed, just check if the two separate strings are equal.

To detect if the user has lost, just keep a single integer variable that stores the number of incorrect guesses and check if that equals 5 (which should be stored in a constant.)

To print out the word for the user, write a function which prints out one letter from the string followed by a space, repeated throughout the word, so that

_ A _ _

gets printed instead of

_A__

Output Sample

What file stores the puzzle words?

words.txt

Would you like to play hangman (yes,no)?

yes
You currently have 0 incorrect guesses.

Here is your puzzle:

_ _ _ _

Please enter your guess.
A

Congratulations, you guessed a letter in the puzzle!

You currently have 0 incorrect guesses.

Here is your puzzle:

_ A _ _

Please enter your guess.
B

Sorry, that letter is NOT in the puzzle.

You currently have 1 incorrect guesses.

Here is your puzzle:

_ A _ _

Please enter your guess.
M

Congratulations, you guessed a letter in the puzzle!

You currently have 1 incorrect guesses.

Here is your puzzle:

M A _ _

Please enter your guess.
A

Sorry, you have guessed that letter already.

Now it counts as a miss.

You currently have 2 incorrect guesses.

Here is your puzzle:

M A _ _

Please enter your guess.
L

Congratuations! You got the correct word, MALL.

Would you like to play hangman (yes,no)?

yes
You currently have 0 incorrect guesses.

Here is your puzzle:

_ _ _ _ _ _ _ _
Please enter your guess.
E

Sorry, that letter is NOT in the puzzle.

You currently have 1 incorrect guesses.

Here is your puzzle:

_ _ _ _ _ _ _ _
Please enter your guess.
A

Congratulations, you guessed a letter in the puzzle!

You currently have 1 incorrect guesses.

Here is your puzzle:

_ _ _ _ _ A _ _
Please enter your guess.
R

Sorry, that letter is NOT in the puzzle.

You currently have 2 incorrect guesses.

Here is your puzzle:

_ _ _ _ _ A _ _
Please enter your guess.
S

Sorry, that letter is NOT in the puzzle.

You currently have 3 incorrect guesses.

Here is your puzzle:

_ _ _ _ _ A _ _
Please enter your guess.
N

Sorry, that letter is NOT in the puzzle.

You currently have 4 incorrect guesses.

Here is your puzzle:

_ _ _ _ _ A _ _
Please enter your guess.
C

Sorry, you have made 5 incorrect guesses, you lose.

The correct word was FOOTBALL.

Would you like to play hangman (yes,no)?

no
Thanks for playing!

References
Textbook: Chapters 8, 9, 13, 22

Notes: Lectures 9, 11, 13-15, 17, 21
Deliverables

One source file: hangman.c, for your solution to the given problem.
All files are to be submitted over WebCourses. (Do NOT submit .cpp files!!!)
Restrictions

Although you may use other compilers, your program must compile and run using Dev C++. Please use Dev C++ to develop your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness.
2) Your programming style and use of white space. Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor, you could get 10% or 15% deducted from your grade.

3) Whether or not you have designed reasonable functions to solve the task at hand.
4) Compatibility with Dev C++ (in Windows). If your program does not compile in this environment, you will get a sizable deduction from your grade.
