PAGE
5

Introduction to C - Programming Assignment #2
Due date: Please consult WebCT for your section
Notes
1. Please read the notes on Dev C++ and WebCT provided with Lab #0 if you didn’t get a chance to do that lab.

Objectives
1. To reinforce your knowledge of the if-then-else construct.
2. To learn how to write simple loops to solve problems and build on previous solutions.
Problem A: Income Tax Reform
Although it seems like the Democrats and Republicans strongly disagree on taxes, their arguments are relatively miniscule compared to other ideas out there for taxation. Both still believe in some form of graduated income tax, but they disagree on exactly what sort of deductions should be in place and the exact percentages for each tax bracket. For this program, you will allow your candidate to "experiment" with different tax plans. In particular, you will allow the user (your candidate) to enter in the percentages for two tax brackets. Then you will allow the user to calculate how much tax would be charged on a particular amount of income under their proposed plan. (To simplify things, we will ignore all deductions for this question.)

Here are the two questions you will ask the user:
1) What is the percentage for the lowest tax bracket?

2) What is the percentage of tax for income above $50,000?

With this information a very simple tax system can be created. For example, if the user enters 10 and 30, then our tax bracket looks like this:

	Income (x)
	Tax Rate

	x < 50000
	10%

	x ≥ 50000
	30%

With this tax bracket, here is how one's tax would be calculated.
Scenario #1: With an income of $30,000, all of the income is taxed within the first bracket, so we simply multiply $30000 × 0.1 = $3000. So this would be the total tax.

Scenario #2: With an income of $150,000, the first $50,000 is taxed at 10%, yielding $5000 in tax. The remaining $100,000 ($150000 – $50000) is taxed at 30%, yielding $30,000. The total tax here would be $35,000.

Input Specification

1. The first percentage entered by the user will be a positive real number less than 100.
2. The second percentage entered by the user will be a positive real number greater than the first number entered and less than 100.

3. The amount of income entered by the user will be a positive integer less than 1,000,000,000.

Output Specification

Output the amount of tax the user will pay under the proposed plan with the following format:
You will pay $X in tax.

where X is the amount of tax represented as a real number, rounded to two decimal places.
Output Sample

Below is one sample output of running the program. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. In the sample run below, for clarity and ease of reading, the user input is given in italics while the program output is in bold.

Sample Run #1

Please enter the percentage of tax for the low bracket.
10

Please enter the percentage of tax for the high bracket.

30

Please enter your annual income.

150000
You will pay $35000.00 in tax.
Problem B: Calculating the Most Important State
The goal of this program is to get a list of electoral votes from a number of different states, and then print out which state has the most electoral votes of those listed. Clearly, this corresponds to the most important state from the list. To make life a little easier, instead of using names for the states, they will be numbered, starting at 1.
In particular, your program should prompt the user for how many states they will enter information for. Let the value they enter be n. You will then prompt the user to enter the number of electoral votes in each of the n states. Finally, your program will print the number of the state with the most electoral votes.
Input Specification

1. n will be a positive integer in between 1 and 50.
2. Each number entered for the number of electoral votes in a state will be in between 3 and 55, inclusive.

3. There will be one and only one state that has the maximal number of electoral votes.
Output Specification

Output a single line with the following format:
State k is the most important with X electoral votes.
where k is the number of the state (with the first state being numbered 1), and X is the number of electoral votes that state has.
Output Samples

Below is a sample output of running the program. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. In the sample run below, for clarity and ease of reading, the user input is given in italics while the program output is in bold.

Sample Run #1

How many states are you entering?
5
How many electoral votes does state 1 have?
15
How many electoral votes does state 2 have?

6
How many electoral votes does state 3 have?

21
How many electoral votes does state 4 have?

10
How many electoral votes does state 5 have?

13
State 3 is the most important with 21 electoral votes.

Problem C: Education Platform
All the political candidates espouse improving our education system. The candidate for whom you work has given you the task of creating a program that can be used to help students' arithmetic skills to show that he/she is serious about education.

You are to write a program that drills kids with multiplication problems. In particular, ask the user how many problems for the game, and then give the user that many random multiplication problems, where each number being multiplied is in between 0 and 12, inclusive. At the end of the game, output how many problems the user has solved correctly and how much time it took them. Then, give students a final score according to the following formula:

Score = Time Spent (in seconds) + 5 × (Number of incorrect problems)

Clearly, the lower the overall score, the better! In this manner, kids can see if they are making progress or not.

How to calculate time spent for a segment of code in a C program:

In order to calculate how much time something takes, you can use the time function. In particular, the function call time(0) returns an int that represents the number of seconds after the birth of the Unix operating system. In order to effectively use this, you must call the function twice: once right before you start what you want to time, and once right afterwards. Subtract these two values to obtain the amount of time a segment of code took. Here is a short example:

int start = time(0);

// Insert code you want to time here.

int end = time(0);

int timespent = end - start;

printf("Your code took %d seconds.\n", timespent);

Input Specification

The number of problems to answer entered by the user will always be a positive integer less than 50.

Output Specification

For each correct response, output: Correct!
For each incorrect response, output: Incorrect, A x B = C.
where A and B are the numbers in the problem they missed, and C is the correct answer.
After all the problems are completed, output a single line with the following format:

You got X problems correct and Y problems incorrect in Z seconds.

where X is the number of problems solved correctly, Y is the number of problems with incorrect answers, and Z is the amount of time in seconds the user took.

Then output one final line with the user's score:

Your final score is S.

where S is the final score for the user using the formula previously given.
Output Samples

Here is one sample output of running the program. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. The user input is given in italics while the program output is in bold.

Sample Run #1
How many problems do you want?

5

Answer: 3 x 9 = 27
Correct!

Answer: 4 x 6 = 42

Incorrect, 4 x 6 = 24.

Answer: 12 x 11 = 132

Correct!

Answer: 8 x 2 = 16

Correct!

Answer: 7 x 5 = 35

Correct!

You got 4 problems correct and 1 problems incorrect in 17 seconds.

Your final score is 22.

References

Textbook: Chapters 5 and 6 (5.1,5.2,6.16.3)

Notes: Lectures 5, 6, 7

Deliverables

Three source files:

1) tax.c, for your solution to Problem A

2) bigstate.c, for your solution to Problem B

3) multgame.c, for your solution to Problem C

All files are to be submitted over WebCourses. (Do NOT submit .cpp files!!!)
Restrictions

Although you may use other compilers, your program must compile and run using Dev C++. Please use Dev C++ to develop your programs. Each of your three programs should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor, you could get 10% or 15% deducted from your grade.

3) Compatibility with Dev C++ (in Windows). If your program does not compile in this environment, you will get a sizable deduction from your grade.
