Introduction to C - Program 5

Use of Strings: DNA Testing

Assigned: 3/30/04, Tuesday

Due Date: 4/6/04, Tuesday
Objective

To give students practice using C strings and more practice using input files.

The Problem: DNA Testing

DNA contains sequences of four possible base pairs Adenine(A), Thymine(T), Guanine(G), and Cytosine(C). A vast majority of the cells of a human being contain nearly identical copies of the whole sequence of DNA for the individual. Due to the vast number of base pairs in the entire DNA sequence, it is pretty much impossible for two different human beings that aren't identical twins to have sequences of DNA that match very closely or identically. For this program, you will take an input file that contains a small sequence of DNA found in a sample, along with several candidates for matches. (In essence, you are trying to identify, which if any of the candidates has the same DNA as found in the sample.) If a perfect match is found, then your program should output which candidate was the perfect match. If no perfect match is found, your program should simply output the best possible match of the candidates, with a score of how good the match is.

Input File Format

The first line of the input file will contain the sample sequence of DNA that we are attempting to match. This sample, along with all other DNA sequences in the file will be represented as a string with capital letters (A, T, G, and C) with no spaces on a line by itself.

The second line in the input file will contain a single positive integer n, indicating the number of candidates to match the sample listed in the file.

The following n lines will contain the sample DNA of each of the n candidates, one candidate to a line.

Here is a sample input file, "input1.txt":

AACTGGTGCAGATACTGTTGA

3

AACTGGTGCAGATACTGCAGA

CAGTTTAGAG

CATCATCATCATCATCATCAT

How to Determine and Score Matches

A perfect match must be between two samples of the exact same length that contain the exact same corresponding letters.

If a match isn't a perfect match, it should get a score. The score will range in between 0 and 100, inclusive. Here is how to score the closeness of a match between two sequences of DNA:

1) Initialize score to 0.

2) Determine the length of the shorter or the two sequences. Let this be L.

3) For the first L characters in each sequence, check to see if two corresponding characters (in the same position in their respective strings) are equal or not. If they are, add 3 to score. If the two characters are part of a matching base pair but aren't equal (either if they are 'A' and 'T' or 'C' and 'G') then add 1 to score. Otherwise add nothing to score.

4) Take score, multiply it by 100, and divide by 3L, in this order, using an integer divide. This will be the score of a match between two DNA sequences.

Output

Your program should simply output a single line to the screen. If there is a perfect match, you should output a message of the following format:

Candidate X is a perfect match.

X should be the candidate number that matched the sample DNA perfectly.

If there isn't a perfect match, output a message of the following format:

The best match is Candidate X, with a score of Y.

X should be the candidate number that matched the sample DNA with the highest score of all the candidates, and Y should be the score of the X's match with the sample. If two (or more) candidates match with the sample with the exact same score, you may output any of these candidates. You are guaranteed that each candidate's sequence of DNA will be distinct from all the other candidates. (Thus, two candidates will never be perfect matches.)
References

Textbook: Chapter 10

Notes: Lecture on Strings

Restrictions

Name the file you create and turn in dna.c. Although you may use other compilers, your program must compile and run using gcc. If you use your olympus account to work on this assignment, please follow the steps shown in class to create, compile, and test your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. You should also include comments throughout your code, when appropriate. If you have any questions about this, please see a TA.

Input Specification

Assume that the user always enters the name of a valid input file that is formatted correctly according to the specification in this problem set.

Output Specification

Your output should follow the examples on the following pages.

Deliverables

A single source file named dna.c turned in through WebCT.

Sample Output #1

For this sample, assume that "input1.txt" is the same file provided in the "Input File Format" section of this assignment.

What file stores the DNA test cases?

input1.txt

The best match is Candidate 1, with a score of 92.

Sample Output #2

For this example, assume that the contents of the file "input2.txt" is as follows:

GATAGTGCGTA

10

ACGATTAGAGAGGGA

AAAAAA

GGGGGG

CCCCCC

TTTTTT

GATAGTGCGTA

ACGTACGTACGTACGT

GCAGATAGA

GATTACA

GATACAT

What file stores the DNA test cases?

input2.txt

Candidate 6 is a perfect match.

Note: The methodology described in this assignment is NOT how DNA matches are made. The algorithm was simply made up so that the class could get some practice with string manipulation on a type of problem that could have practical applications.
