Introduction to C - Programming Assignment #4

Assigned: 10/18/04, Monday

Due: 10/30/04, Saturday at 11:55pm WebCT Time

Objective

1. To give students practice in using functions

Program A: Banking with Functions

Rewrite your solution to Program #3B so that it utilizes functions to take care of deposits, withdrawals, and printing the current account information. Make sure to carefully think about your function prototypes before you start on this part of the assignment. No sample data has been included since your program should run exactly as bankplus.c ran for the previous assignment. Call your program bankfunc.c.
Program B: Running your own Math Calculations

Write a program that allows the user to choose the following options:

1) Calculate a factorial

2) Calculate an exponent

3) Calculate an approximation of PI

4) Calculate sin x, where x is in radians

5) Calculate cos x, where x is in radians

6) Calculate tan x, where x is in radians

7) Quit

Your program should prompt the user with the menu, read in the user's choice, execute the choice, and then re-prompt the user with the menu and continue until the user chooses to quit. Call your program mathfunc.c. Do NOT include math.h in this program!!!

Option 1:

For the first option, you will ask the user to enter a single non-negative integer.

To calculate n!, or n factorial, simply calculate the following product: 1x2x3x...xn. For example, 7! = 1x2x3x4x5x6x7 = 5040.

Here is the prototype of the function which should carry out the calculation:

// Precondition: 0 < n < 13

// Postcondition: Returns n!

int fact(int n);

Option 2:

For the second option, you will ask the user to enter a real number, b, which will be the base, and a non-negative integer, e, which will be the exponent. Your program should calculate be.

Here is the prototype of the function which should carry out the calculation:

// Precondition: base is a real number, exp >= 0

// Postcondition: Returns base raised to the exp power.

double my_pow(double base, int exp);

Option 3:

For the third option, ask the user for a positive integer in between 1 and 7 to specify the number of digits of precision.

Use the following approximation for (:

[image: image1.wmf]...

11

1

9

1

7

1

5

1

3

1

1

4

+

-

+

-

+

-

=

p

Technically, you would have to continue this sum for ever to calculate
[image: image2.wmf]4

p

exactly. However, to use this expansion to calculate (, accurate to 2 digits, for example, you just have to carry out the expansion to the term -1/99. To be accurate to three digits, you have to carry out the expansion to the term -1/999. (Hint: notice that the denominator in each of these cases is 1 less than 100 and 1000, respectively. These two values are 102 and 103 respectively, and 2 and 3 are exactly the number of digits of precision we are getting for these two expansions.)

Here is the prototype of the function which should carry out the calculation:

// Precondition: n is in between 1 and 7, inclusive.

// Postcondition: Returns PI correct to n places.

double my_PI(int n);

Option 4:

For the fourth option, ask the user for a real number in between 0 and 1.57, representing the number of radians for which to calculate the sine of.

To calculate an approximation of sin x, use the following formula:

[image: image3.wmf]!

9

!

7

!

5

!

3

sin

9

7

5

3

x

x

x

x

x

x

+

-

+

-

=

(Notice how this formula has expressions that are powers and factorials, remember to REUSE the functions you've already written!!!)

Here is the prototype of the function which should carry out the calculation:

// Precondition: rad is in between 0 and 1.57.

// Postcondition: Returns an approximation of sin(rad).

double my_sin(double rad);

Option 5:

For the fifth option, ask the user for a real number in between 0 and 1.57, representing the number of radians for which to calculate the cosine of.

To calculate an approximation of cos x, use the following formula:

[image: image4.wmf]!

8

!

6

!

4

!

2

1

cos

8

6

4

2

x

x

x

x

x

+

-

+

-

=

Here is the prototype of the function which should carry out the calculation:

// Precondition: rad is in between 0 and 1.57.

// Postcondition: Returns an approximation of cos(rad).

double my_cos(double rad);

Option 6:

For the sixth option, ask the user for a real number in between 0 and 1.57, representing the number of radians for which to calculate the tangent of.

Finally, to calculate tan x, notice that
[image: image5.wmf]x

x

x

cos

sin

tan

=

.

Here is the prototype of the function which should carry out the calculation:

// Precondition: rad is in between 0 and 1.57.

// Postcondition: Returns an approximation of tan(rad).

double my_tan(double rad);

Sample Answers

An exact sample input and output won't be provided in the interest of saving space. Instead, a few sample answers are provided below:

12! = 479001600

2.35 = 64.363430

pi to four decimal digits of precision is 3.141393 (Note that this is what your program should print out. There's no need for your program to print only 3.141. The four digits indicates that only 3.141 are correct.)

sin(.23) = .227978

cos(.23) = .973666

tan(.23) = .234143

Restrictions

Although you may use other compilers, your program must compile and run using cygwin or gcc. Please use either your olympus account or jGRASP to develop your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include ample comments throughout your code describing the major steps in solving the problem.

Please name your solution to part A: bankfunc.c

Please name your solution to part B: mathfunc.c

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. (Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor you could get 10% or 15% deducted from your grade.)

3) Compatibility to either cygwin in Windows or gcc under olympus. (If your program does not compile in either of these environments, you will get a sizable deduction from your grade.)

_1159633007.unknown

_1159633389.unknown

_1159633567.unknown

_1159633263.unknown

_1159632945.unknown

