PAGE
2

Introduction to C - Programming Assignment #4
Due date: Please consult WebCourses for your section
Objectives
1. To reinforce your knowledge of reading in data from files.

2. To reinforce your knowledge of utilizing arrays.

3. To learn how to write functions, given function prototypes.
Problem: 15 Puzzle
This is a common puzzle with a 4x4 playing space with 15 tiles, numbered 1 through 15. One "spot" is always left blank. Here is an example of the puzzle:

[image: image1.png]

The goal is to get the tiles in order, 1 through 15, from left to right, top to bottom, by just sliding tiles into the empty square. In this configuration, the goal would be to get the 14 and 15 to switch places, without affecting any of the other squares.

Your goal will be to write a program that allows the user to play this game.

In particular, you will fill in a scaffold given to you that has descriptions of the different functions you must fill in. The functions you must fill in, along with their specifications are included in the attachment puzzle15scaffold.c.

Input File Specification
The first part of your program will read in possible puzzle configurations from a file and choose one of them randomly. The file format is as follows:

The first line of the input file will contain a single positive integer n, representing the number of puzzles in the file. The puzzles will be contained in the next 5n lines. In particular, each puzzle will be stored in 5 lines. The first line will contain the first row of values in the puzzle separated by spaces. The second line will contain the second row, the third line, the third row and the fourth line, the fourth row. The blank spot will be designated by the integer 0. The last line (fifth) will be a blank line.
Sample Input File

3

1 0 2 3

5 6 7 4

9 10 11 8

13 14 15 12

15 1 2 3

14 13 12 11

10 9 8 7

6 0 5 4

1 2 3 4

5 6 0 8

9 10 7 11

13 14 15 12

Output Specification
At the very beginning of the program, you will prompt the user to enter in the name of the file (this has already been done for you). Then, the program will open the file and load a puzzle into its memory. (You will do this in the loadPuzzle function.)

Once this is done, the puzzle should be displayed to the user (printPuzzle will do the work, but the call to this function is already in main) and the user should choose a tile to move. Roughly the board should print out as follows:

1
2
_
3

5
6
7
4

9
10
11
8

13
14
15
12

Note that an underscore is to be used to denote the blank square and that internally, this is stored as 0.

Prompt the user with the following question after showing them the board:

Which piece would you like to slide into the open slot?

Note, answering 0 means you quit the game without winning.

This will be executed from the getMove function.

If the user chooses a valid square, process the move and print out the board again. If they do not, print out the following message:

Sorry, that is not a valid square to slide into the open slot.

No move has been executed.

If the user chooses 0, print out:
Sorry, looks like you gave up on the puzzle.

You'll notice that some of this has already been done for you. When the game ends, the user will get prompted with the following menu again:

1. Load a new puzzle.

2. Quit
Output Sample
Two samples are provided in the files puzzle15-1.out and puzzle15-2.out
References
Textbook: Chapters 8.2, 9, 22.1, 22.2

Notes: Lectures 9, 12-15, 17
Deliverables

One source file: puzzle15.c, for your solution to the given problem.
All files are to be submitted over WebCourses. (Do NOT submit .cpp files!!!)
Restrictions

Although you may use other compilers, your program must compile and run using Dev C++. Please use Dev C++ to develop your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness.
2) Your programming style and use of white space. Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor, you could get 10% or 15% deducted from your grade.

3) Whether or not you adhered to the given function prototypes.

4) Compatibility with Dev C++ (in Windows). If your program does not compile in this environment, you will get a sizable deduction from your grade.
