
COP 3223 Program #3: Pizza Shack

Program A: We Sell Wings Also!!! (wings.py)

The owner of Pizza Shack has realized that other pizza places increase their profits by selling

items other than pizza!!! While a pizza purist considers his blasphemy, the owner of Pizza Shack

is no purist; it fact, he’s willing to sell wings to make more money!!!

A common trick used by other stores is to sell a greater quantity of wings at a better value. (For

examples, 5 wings might cost $7.00 while 10 wings only costs $13.00.) Since our owner isn’t so

sure about the exact pricing of the wings, she would like for you to produce a program for her

that will help her experiment with different wing prices.

In particular, she wants your program to print out charts that have prices for different multiples

of 5 wings. All of the pricing schemes will follow a decreasing arithmetic sequence for the price

of additional wings. To keep things simple, she simply requests that you print out prices in cents,

and not worry about tax.

Thus, your program will take the following inputs:

1) Cost of five wings (in cents)

2) The decrease (in cents) for every addition of five wings added to any single order.

3) The maximum number of wings for any order.

With these inputs, you are to produce a chart where each row shows the number of wings and

their cost, separated by a tab (“\t”) character.

You are guaranteed that the price list will make sense. Namely, the owner won’t type in any

values that result in a larger order being cheaper than a smaller order.

Input Specification

1. The cost of five wings (in cents) will be a positive integer in between 300 and 1000, inclusive.

2. The decrease (in cents) for every addition of five wings will be a positive integer in between 5

and 50, inclusive.

3. The maximum number of wings for any order will be a positive multiple of 5 less than or

equal to 100. (This number will also be such that the cost for the maximum number of wings on

the chart will be the most expensive of any of the possible orders.)

Note: YOU DO NOT HAVE TO CHECK TO SEE IF THESE RESTRICTIONS ARE MET

WITH IF STATEMENTS IN YOUR CODE. RATHER, THIS IS A GUARANTEE THAT

THE GRADER WILL NOT USE TEST CASES OUTSIDE OF THESE BOUNDS.

Sample Run (User input in bold and italics)
What is the cost of five wings, in cents?

700

What is the decrease per additional five wings, in cents?

25

What is the maximum number of wings in an order?

50

Wings Cost(in cents)

----- --------------

5 700

10 1375

15 2025

20 2650

25 3250

30 3825

35 4375

40 4900

45 5400

50 5875

Program B: Wing Edit (wings2.py)

The Pizza Shack owner has realized that using the arithmetic sequence formula has limited the

size of her orders. Namely, eventually if you start subtracting a fixed amount from the price of

five wings, you eventually get below 0, which leads to an absurd pricing system. Luckily, you

have a brilliant idea you’ve pitched to her: Put a minimum value for the additional cost of five

wings added to any order!

Thus, in the sample shown in the previous program, the 5 wings from 45 to 50 wings cost $4.75,

but if we extended the chart and looked at the prices of 140 and 145 wings, we’d see that they

were identical ($101.50). Instead, what could happen is to stop using the formula to generate the

price of five extra wings when it dips below a certain value. In these cases, simply add this fixed

certain value for the cost of those five extra wings.

In this program, take your solution to part A and add a single prompt for input, getting the

minimum price, in cents, for an additional five wings.

Input Specification

Same as part A, with the added guarantee:

4. The minimum number of cents for an additional five wings will be a positive integer in

between 200 and the cost of the first five wings, inclusive.

Sample Run (User input in bold and italics)
What is the cost of five wings, in cents?

795

What is the decrease per additional five wings, in cents?

50

What is the maximum number of wings in an order?

70

What is the minimum cost for an additional five wings, in cents?

295

Wings Cost(in cents)

----- --------------

5 795

10 1540

15 2235

20 2880

25 3475

30 4020

35 4515

40 4960

45 5355

50 5700

55 5995

60 6290

65 6585

70 6880

Program C: Simulating Sales (sales.py)

The owner of Pizza Shack would like for you to write a computer program that simulates sales at

Pizza Shack. Through some careful study, she’s figured out that a normal distribution (also

known as a Gaussian distribution) best models her sales.*

She would like for you to create a program that allows her to look at some statistics for

simulating any number of days’ worth of sales. She wants the program to take in the following

three inputs:

1) The average value of sales in a day at Pizza Shack (in dollars)

2) The standard deviation of sales in a day at Pizza Shack (in dollars)

3) The number of days of the simulation.

She’s curious about the following statistics over the course of all the days:

1) The lowest daily sales total (in dollars).

2) The highest daily sales total (in dollars).

3) The actual average of all the daily sales totals for the simulation.

4) The number of days for which sales are one standard deviation above the average that was

used to generate the simulation.

The last item will be based on the first two input values. Namely, if the first input value is $1000

and the second is $200, then for the last item, we would want to see the number of days with

sales above $1200. Note that if we were to take the actual average of these days in the

simulation, they might not equal $1000 exactly.

In order to simulate a single sale, you will have to use the following function in the random

library:

random.gauss(mu, sigma)¶

Gaussian distribution. mu is the mean, and

sigma is the standard deviation. Returns a

random value generated with the specified

normal distribution.

You can find the documentation for all the functions in the random library here:

https://docs.python.org/3.0/library/random.html

* - Real restaurant sales probably have different distributions on different days and different

times of the year. For example, many probably consistently get more sales on a Friday than a

Tuesday. Those around UCF probably do better during the school year. But given that all of

these factors are fixed (say we look at Fridays during the Fall semester), we might expect a

normal distribution of sales.

https://docs.python.org/3.0/library/random.html#random.gauss
https://docs.python.org/3.0/library/random.html

Sample Program Run (User Input in Bold and Italics)
What is the average value of sales a day?

1000

What is the standard deviation of sales a day?

200

How many days do you want to simulate?

100

The lowest daily sales were $299.5003163090596.

The highest daily sales were $1436.1509911664045.

The average daily sales were $989.9605128695194.

The number of days above $1200.0 was 19.

Sample Program Run (User Input in Bold and Italics)
What is the average value of sales a day?

1000

What is the standard deviation of sales a day?

200

How many days do you want to simulate?

100

The lowest daily sales were $428.62433377684454.

The highest daily sales were $1490.7184401204745.

The average daily sales were $1004.6493813612119.

The number of days above $1200.0 was 18.

Sample Program Run (User Input in Bold and Italics)
What is the average value of sales a day?

500

What is the standard deviation of sales a day?

145

How many days do you want to simulate?

50

The lowest daily sales were $121.12031736737066.

The highest daily sales were $849.7255046319253.

The average daily sales were $478.9856685144279.

The number of days above $645.0 was 5.

Note: It’s near impossible that your program will match this output exactly! Rather, the

whole point of simulations is that each time you’ll see some differences, but over many

trials, answers tend to converge to reasonably predictable ranges. The graders will not

judge correctness by looking at the answers only for this problem, but they’ll actually

analyze your code, in addition to making sure that your answers are in the likely ranges

that we expect.

Deliverables

Please submit three separate .py files for your solutions to these problems via WebCourses by the

designated due date:

Program A: wings.py

Program B: wings2 .py

Program C: sales.py

