Introduction to C - Programming Assignment #2

Due Date: Please Consult WebCourses for your section
Objectives

1. To practice applying the if statement

2. To practice applying the for loop.

3. To practice applying the while loop.

4. To practice using turtle graphics.
Problem A: Diamonds are a Girl's Best Friend (diamond.py)
Now that Arup is getting married, he's found out the hard way that diamonds are a girl's best friend. For this program, you'll write a Python program that prints out a diamond of a specified size. We will say that an n-carat diamond is printed on 2n-1 lines, where the first line has 1 star, the second 3 stars, etc. The nth line will have 2n-1 stars. Each subsequent line will have two fewer stars than the previous line. The spacing will be such that the diamond has a vertical line of symmetry. Here are some examples:
1 carat diamond
3 carat diamond
4 carat diamond

 *

 *

*

 *

*
Prompt the user for the size of the desired diamond and then print this diamond pattern out.

Input Specification
1. The value entered by the user will be a positive integer less than 20.
Output Specification
Output a diamond design as specified in the problem above.
Output Sample

Below is one sample output of running the program. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. In the sample run below, for clarity and ease of reading, the user input is given in italics while the program output is in bold. (Note: When you actually run your program no bold or italics should appear at all. These are simply used in this description for clarity’s sake.)

Sample Run #1

What carat diamond do you want?

2

 *

 *
Sample Run #2

What carat diamond do you want?

5

 *

 *
Problem B: Lottery (lottery.py)

Now that Arup has some credit card debt due to some fancy diamonds, he has to come up with a quick plan to pay off that debt, otherwise he'll pay exorbitant amounts in interest. Help Arup play the lottery to win back his diamond money and more!
In your program, ask the user how many times they want to play the lottery. For each time they want to play, have your program generate 5 different random integers in between 1 and 30, inclusive. (You can create an empty list and add each number into the list so long as the number isn't already in the list.)
After creating the winning combination, ask the user to enter their winning numbers.

Once they've entered their numbers, print out the winning combination (in sorted order) and how many numbers the user matched.

Here is a chart with the payouts for matching each number of values:

	Number of Values Matched
	Payout

	0
	$0

	1
	$0

	2
	$10

	3
	$500

	4
	$20000

	5
	$1000000

After the user's last game, print out his/her total winnings.

Input Specification
1. The number of times the user will play will be a positive integer less than or equal to 10.
2. The five numbers the user enters for each combination will all be distinct integers in between 1 and 30, inclusive.
Output Specification
For each game, print out the winning combination and number of values the user matched with a statement of the following format:
Ticket #k: The winning combination was [a,b,c,d,e]. You matched X number(s).

k represents the number of the game, starting at 1. a, b, c, d and e are the winning numbers in sorted order from smallest to largest and X is the number of values the user matched.

After the games are over, print out a statement with the following form:

You won a total of $A with N tickets.
where A is the amount of money won and N is the number tickets bought.

Output Sample

Below is one sample output of running the program. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. In the sample run below, for clarity and ease of reading, the user input is given in italics while the program output is in bold. (Note: When you actually run your program no bold or italics should appear at all. These are simply used in this description for clarity’s sake.)

Sample Run #1

How many lottery tickets do you want?
3
What numbers do you want to choose for ticket #1?

6

10

11

20

23
Ticket #1: The winning combination was [3,7,10,23,25]. You matched 2 number(s).
What numbers do you want to choose for ticket #2?

1

5

15

16

18
Ticket #2: The winning combination was [2,4,19,24,30]. You matched 0 number(s).

What numbers do you want to choose for ticket #3?

10

11

19

22

27
Ticket #3: The winning combination was [7,10,19,22,27]. You matched 4 number(s).

You won a total of $20010 with 3 tickets.

Problem C: Credit Card Payments (credit.py)

Despite his greatest efforts, Arup was unable to win the lottery. In fact, since he bought so many tickets, he is actually further in debt now. Luckily, he's realized the folly of his ways and needs you to write a program that will manage his credit card payments.

In this program, you will write out information from monthly credit card statements, assuming that Arup makes no new purchases. Your program will prompt him for the following information:

1) Current Outstanding Balance

2) Annual Percentage Rate (Interest)

3) Monthly Payment he can make

Given this information, you are to write out a table that summarizes how much more he owes after each payment.
Input Specification
1. The outstanding balance will be a positive real number less than 100,000 (in dollars).

2. The annual percentage rate will be a positive real number less than 20 (in percent).

3. The monthly payment will be a positive real number (in dollars) that is greater than the interest for the first payment, but less than the outstanding balance.
Output Specification
The first two lines of output of your program should be a chart header as shown below:

Month
Payment
Balance

To make these line up properly, separate each item with a tab character, '\t'.

Then, for each month, simply list the information, starting with month 1, after you've made your first payment. Print out both the payment and balance rounded to 2 decimal places.

Output Sample

Below is one sample output of running the program. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. In the sample run below, for clarity and ease of reading, the user input is given in italics while the program output is in bold. (Note: When you actually run your program no bold or italics should appear at all. These are simply used in this description for clarity’s sake.)

Sample Run #1

What is your outstanding balance (in dollars)?
10000.00

What is the annual percentage rate of interest on your card?

14.9

What monthly payment will you be making (in dollars)?

400.00
Month
Payment
 Balance

1

$500.00
$9624.17

2

$500.00
$9243.67

3

$500.00
$8858.44

4

$500.00
$8468.43

5

$500.00
$8073.58

6

$500.00
$7673.83

7

$500.00
$7269.11

8

$500.00
$6859.37

9

$500.00
$6444.54

10

$500.00
$6024.56

11

$500.00
$5599.37

12

$500.00
$5168.89

13

$500.00
$4733.07

14

$500.00
$4291.84

15

$500.00
$3845.13

16

$500.00
$3392.88

17

$500.00
$2935.01

18

$500.00
$2471.45

19

$500.00
$2002.14

20

$500.00
$1527.00

21

$500.00
$1045.96

22

$500.00
$558.94

23

$500.00
$65.88

24

$66.70
$0.00
Part D: Turtle (myturtle.py)

Though this isn't in the tutorial, using the turtle is simple enough, you should be able to pick it up with these few hints. First, in order to use the turtle, do the following import first:

import turtle
To make commands that the turtle listens to, you need to call each method (function) as follows:

turtle.methodname()
This turtle emulates the language Logo. In particular, the turtle has a pen. If the pen is down and the turtle moves forward, then a line is drawn. The turtle can turn right or left any number of degrees, move forward, lift its pen up or put it down, and it can draw a circle.

Also, it may be useful to use some functions in the math library when using the turtle. To use the math library do the following import:

import math

To call methods in the math library, you must put "math." (without the double quotes) before the method call. Here is a call to the math acos function:

angle = math.acos(1/2)

Note that acos returns an angle in radians, and by default, the turtle turns right or left in degrees. But, if we want, we can allow the turtle to take in angles by radians. We just have to run the following command:

turtle.radians

Here are some of the turtle functions:

forward(int x) - moves the turtle forward x pixels

right(double angle) - turns the turtle angle degrees (or radians) to the right

left(double angle) - turns the turtle angle degrees (or radians) to the left

reset() - clears the drawing screen and moves the turtle back to the middle, pointing to the right.

up() - picks up the pen so that in a subsequent command, nothing is drawn

down() - puts down the pen so that in a subsequent command moving forward, something is drawn.

circle(int radius, double angle) - draws a circle with the given radius for angle number of degrees (or radians). For example, if angle is 90 and the turtle is in degree mode, then a quarter of a circle is drawn.

color(String c) - sets the color of the pen to c. (Note: I am note sure which colors are supported via their names. So far, I have tried red, green and purple and they all work.)

For a full description of what the turtle can do, go here:

http://docs.python.org/library/turtle.html
For this part of the assignment, write a program that prints out a spiraling triangle, similar to the one shown below. (Note: This is the output for the sample run at the bottom of the page.)
[image: image1.png]

Prompt the user to enter the maximum length of the side of the triangle and draw the corresponding triangle where each side length is 10 pixels more than the previous side drawn. (Technically, in this drawing, the last side should be extended by 10 pixels. To make the figure look better, you can make the last two sides the same length, if you like as in the figure above.)

Note: It's okay if your triangle prints in a different orientation with the horizontal side being on the top instead of the bottom.
Input Specification
1. The value entered by the user for the maximum length of a side will be a positive integer multiple of 10 in between 50 and 300, inclusive.
Output Specification
Just print out the triangle, using the design shown above. (You can either start printing from the inside out, or outside in.)
Sample Run #1

What is the maximum side length of your triangle?

70

Deliverables

Four files submitted over WebCourses. The names of the first four files should be diamond.py, lottery.py, credit.py and myturtle.py.

All files are to be submitted over WebCourses.

Restrictions

Please use Python 3.2 and the IDLE environment to interpret your programs. Alternatively, you may use Eclipse, if you already know how to use that environment.

Grading Details

Your programs will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor, you could get 10% or 15% deducted from your grade.

3) Compatibility to Python 3.2.
