
Fall 2022 CIS 3362 Homework #6: Public Key Encryption

Check WebCourses for the due date

1) (10 pts) In the Diffie-Hellman Key Exchange, let the public keys be p = 61, g = 31, and the

secret keys be a = 45 and b = 16, where a is Alice’s secret key and b is Bob’s secret key. What

value does Alice send Bob? What value does Bob send Alice? What is the secret key they share?

Use a program or calculator to quickly simplify the modular exponentiations that arise, but show

what each calculation is.

2) (10 pts) In an RSA scheme, p = 43, q = 23 and e = 181. What is d? Show the work by hand, but

for any complicated calculation, do it on a calculator or use a program. (So, show each step of the

Extended Euclidean Algorithm, but feel free to use a calculator to quickly get quotients and

remainders.)

3) (20 pts) The Fast Modular Exponentiation code shown in class is written in a top-down recursive

fashion. The problem can be solved with similar efficiency iteratively, by simulating iterative base-

conversion (to binary) formula with the exponent, and calculating the base raised to each

successive power of 2 (mod the mod value). Here is a trace by hand of this algorithm with base =

3, exponent = 43, mod = 83:

Store our initial result as 1. We’ll multiply terms of the form 3x mod 83 into this result.

43%2 = 1, this means that 31 is a part of our result, so change our result to 3.

43/2 = 21 (remaining part of our exponent.

Update our current multiplying value from 3 to 32 = 9.

21%2 = 1, this means that 32 (already stored) is part of our result so change result = 3 x 9 = 27

21/2 = 10

Update our current multiplying value from 9 to 92 = 81 (mod 83). [Note: this is 34.]

10%2 = 0, so we don’t change our result

10/2 = 5

Update our current multiplying value from 81 to 812 (mod 83) = 4 [Note: this is 38 mod 83.]

5%2 = 1, this means that we update our result = 27 x 4 (mod 83) = 25.

5/2 = 2

Update our current multiplying value from 4 to 42 = 16. [Note: this is 316 mod 83.]

2%2 == 0, so we don’t change our result

2/2 = 1

Update our current multiplying value from 16 to 162 (mod 83) = 7. [Note: this is 332 mod 83.]

1%2 = 1, this means that we update our result = 25 x 7 (mod 83) = 9

1/2 = 0, so we exit our loop

The answer is 9. Notice, that what’s really happening here is that 43 = 1010112, so we have 343 =

332383231. The algorithm has one value that starts at 3, and then gets squared each time (generating

32,34,38, etc.) As we start with our exponent at 43, each time we mod and divide, we’re peeling off

the last binary digit. If this is one, then we can just multiply our current term (power of 3) and mod

into our accumulator variable storing the result.

Please write this function in either Python or Java (so we can easily test its efficiency on large

integers!). Please use one of the following two prototypes:

Python

def fastmodexp(base,exp,mod)

// Java – Please put in class Question3

public static BigInteger fastmodexpo(BigInteger base, BigInteger

exp, BigInteger mod)

Our TAs will grade your function by making calls to it from their own main.

4) (30 pts) The following ciphertext below was created with the El Gamal cryptosystem with the

prime q = 19157. You also know that the plaintext was written in all lowercase letters and split

into blocks of 3 characters and the way that the characters abc were mapped to a number was using

the formula 676*value(a) + 26*value(b) + value(c), where the value function returns the 0 to 25

value typically used in cryptography to represent letters ‘a’ (0) to ‘z’ (25). Use this information to

decrypt the following ciphertext:. (Note: This will also be given to you in a text file, for ease of

processing and as mentioned, each line represents the encryption of 3 characters, the first number

is c1 and the second number is c2.)

8352 17131

1565 17613

18077 12139

14140 1640

8910 13256

18846 1135

6812 12961

8620 4761

3984 3064

3129 6296

16594 4682

17932 9494

7407 14354

1869 1038

10542 7222

7492 12721

13572 1255

16299 11712

7197 16361

17245 6683

6136 6014

18340 6702

16036 631

18012 12760

6114 7446

9276 10932

11176 18217

9278 2044

11461 15736

10544 7635

12477 5558

17923 5156

16499 19045

12370 5390

2004 2128

17590 7949

513 13666

3127 14850

13686 3243

12928 12825

18173 18480

5764 8808

5244 12211

2234 9429

18401 17242

9050 11469

13130 11932

12471 11967

571 3303

16719 16142

1727 19137

17036 3174

344 12895

4124 4096

5997 2360

925 3465

1078 5128

13291 10623

2626 615

5) (30 pts) Time to break another code! This was produced using rsa3.py. Here are the public

keys for the system used.

Public key n = 27299026172500142606639

Public key e = 7455573413522025488689

Here is the ciphertext to decipher:

17522509615978177173541

9355128999191425516583

17969916466888149264201

16284171845378592258094

9091719398917520846644

1858849677057002482192

10113610280720608183543

15541430701657029579837

3153597330798750301099

11222381486914003429676

17779392253507960098764

19095139734721053624828

12524940225900268861892

Each number represents a block of 16 lowercase letters.

Good luck!

Arup

