
Fall 2022 CIS 3362 Homework #6: Public Key Encryption 

Check WebCourses for the due date 

 

 

1) (10 pts) In the Diffie-Hellman Key Exchange, let the public keys be p = 61, g = 31, and the 

secret keys be a = 45 and b = 16, where a is Alice’s secret key and b is Bob’s secret key. What 

value does Alice send Bob? What value does Bob send Alice? What is the secret key they share? 

Use a program or calculator to quickly simplify the modular exponentiations that arise, but show 

what each calculation is. 

 

2) (10 pts) In an RSA scheme, p = 43, q = 23 and e = 181. What is d? Show the work by hand, but 

for any complicated calculation, do it on a calculator or use a program. (So, show each step of the 

Extended Euclidean Algorithm, but feel free to use a calculator to quickly get quotients and 

remainders.) 

 

3) (20 pts) The Fast Modular Exponentiation code shown in class is written in a top-down recursive 

fashion. The problem can be solved with similar efficiency iteratively, by simulating iterative base-

conversion (to binary) formula with the exponent, and calculating the base raised to each 

successive power of 2 (mod the mod value). Here is a trace by hand of this algorithm with base = 

3, exponent = 43, mod = 83: 

 

Store our initial result as 1. We’ll multiply terms of the form 3x mod 83 into this result. 

 

43%2 = 1, this means that 31 is a part of our result, so change our result to 3. 

43/2 = 21 (remaining part of our exponent. 

Update our current multiplying value from 3 to 32 = 9. 

21%2 = 1, this means that 32 (already stored) is part of our result so change result = 3 x 9 = 27 

21/2 = 10 

Update our current multiplying value from 9 to 92 = 81 (mod 83). [Note: this is 34.] 

10%2 = 0, so we don’t change our result 

10/2 = 5 

Update our current multiplying value from 81 to 812 (mod 83) = 4 [Note: this is 38 mod 83.] 

5%2 = 1, this means that we update our result = 27 x 4 (mod 83) = 25. 

5/2 = 2 

Update our current multiplying value from 4 to 42 = 16. [Note: this is 316 mod 83.] 

2%2 == 0, so we don’t change our result 

2/2 = 1 

Update our current multiplying value from 16 to 162 (mod 83) = 7. [Note: this is 332 mod 83.] 

1%2 = 1, this means that we update our result = 25 x 7 (mod 83) = 9 

1/2 = 0, so we exit our loop 

 

The answer is 9. Notice, that what’s really happening here is that 43 = 1010112, so we have 343 = 

332383231. The algorithm has one value that starts at 3, and then gets squared each time (generating 

32,34,38, etc.) As we start with our exponent at 43, each time we mod and divide, we’re peeling off 

the last binary digit. If this is one, then we can just multiply our current term (power of 3) and mod 

into our accumulator variable storing the result. 



Please write this function in either Python or Java (so we can easily test its efficiency on large 

integers!). Please use one of the following two prototypes: 

 
# Python 

def fastmodexp(base,exp,mod) 

 

// Java – Please put in class Question3 

public static BigInteger fastmodexpo(BigInteger base, BigInteger 

exp, BigInteger mod) 

 

Our TAs will grade your function by making calls to it from their own main. 

 

4) (30 pts) The following ciphertext below was created with the El Gamal cryptosystem with the 

prime q = 19157. You also know that the plaintext was written in all lowercase letters and split 

into blocks of 3 characters and the way that the characters abc were mapped to a number was using 

the formula 676*value(a) + 26*value(b) + value(c), where the value function returns the 0 to 25 

value typically used in cryptography to represent letters ‘a’ (0) to ‘z’ (25). Use this information to 

decrypt the following ciphertext:. (Note: This will also be given to you in a text file, for ease of 

processing and as mentioned, each line represents the encryption of 3 characters, the first number 

is c1 and the second number is c2.) 

 
8352 17131 

1565 17613 

18077 12139 

14140 1640 

8910 13256 

18846 1135 

6812 12961 

8620 4761 

3984 3064 

3129 6296 

16594 4682 

17932 9494 

7407 14354 

1869 1038 

10542 7222 

7492 12721 

13572 1255 

16299 11712 

7197 16361 

17245 6683 

6136 6014 

18340 6702 

16036 631 

18012 12760 

6114 7446 

9276 10932 

11176 18217 

9278 2044 

11461 15736 

10544 7635 

12477 5558 

17923 5156 

16499 19045 

12370 5390 

2004 2128 



17590 7949 

513 13666 

3127 14850 

13686 3243 

12928 12825 

18173 18480 

5764 8808 

5244 12211 

2234 9429 

18401 17242 

9050 11469 

13130 11932 

12471 11967 

571 3303 

16719 16142 

1727 19137 

17036 3174 

344 12895 

4124 4096 

5997 2360 

925 3465 

1078 5128 

13291 10623 

2626 615 

 

5) (30 pts) Time to break another code! This was produced using rsa3.py. Here are the public 

keys for the system used. 

 
Public key n = 27299026172500142606639 

Public key e = 7455573413522025488689 

 

Here is the ciphertext to decipher: 

 
17522509615978177173541 

9355128999191425516583 

17969916466888149264201 

16284171845378592258094 

9091719398917520846644 

1858849677057002482192 

10113610280720608183543 

15541430701657029579837 

3153597330798750301099 

11222381486914003429676 

17779392253507960098764 

19095139734721053624828 

12524940225900268861892 

 

Each number represents a block of 16 lowercase letters. 

 

Good luck! 

 

Arup 


