

Fall 2019 CIS 3362 Homework #5
Number Theory, RSA
Check WebCourses for the due date
Please work in pairs and put both people's names on each file submitted!

- 1) What is the prime factorization of 1337834957760 ?
- 2) What is $\phi(1337834957760)$?
- 3) Using Fermat's Theorem, determine the remainder when 135^{2672} is divided by 179.
- 4) Using Euler's Theorem, determine $7429^{628993} \bmod 529984$.
- 5) In an RSA scheme, $p = 31$, $q = 19$ and $e = 77$. What is d ?
- 6) A primitive root, α , of a prime, p , is a value such that when you calculate the remainders of α , α^2 , α^3 , α^4 , ..., α^{p-1} , when divided by p , each number from the set $\{1, 2, 3, \dots, p-1\}$ shows up exactly once. Prove that a prime p has exactly $\phi(p-1)$ primitive roots. In writing your proof, you may assume that at least one primitive root of p exists. (Normally, this is the first part of the proof.) (Note: This question is difficult, so don't feel bad if you can't figure it out.)
- 7) One of the primitive roots (also called generators) mod 43 is 29. There are 11 other primitive roots mod 43. One way to list these is $29^{a1} \bmod 41$, $29^{a2} \bmod 41$, ... $29^{a12} \bmod 41$, where $0 < a1 < a2 < \dots < a12$. (Note: it's fairly easy to see that $a1 = 1$, since 29 is a primitive root.) Find the values of $a10$, $a11$ and $a12$ and the corresponding remainders when 29^{a10} , 29^{a11} and 29^{a12} are divided by 43.
- 8) In the Diffie-Hellman Key Exchange, let the public keys be $p = 43$, $g = 20$, and the secret keys be $a = 25$ and $b = 29$, where a is Alice's secret key and b is Bob's secret key. What value does Alice send Bob? What value does Bob send Alice? What is the secret key they share?

9) For this question, you are going to implement a RSA protocol to send the TAs and me (Arup) a message. For our RSA system, the public keys are as follows:

$n = 135966249934813212187094231381$

$e = 437623485647823657465674567$

Your message must be in Radix-64. Please google this format. It allows for 64 characters, encoding each with 6 bits. The characters are: all lowercase letters, all uppercase letters, all digits, the plus sign(+) and a forward slash (/).

First, type your message in a textfile only using those 64 characters. Type 16 characters per line. To encrypt, you will encrypt each line, one by one. Please pad the last line with '+' characters as needed. Convert each line of 16 Radix-64 characters to a 96 bit integer. This will be your plaintext for RSA. Use the public keys given above and calculate the ciphertext, which will be a number from 1 to $n-1$. Output this number to a textfile. Do this for each line of the message. Here is what you need to turn in for this question:

1. Your code.
2. A text file with your ciphertext. This should have one number per line, for each block of 16 Radix-64 characters.

If you did everything to specification, the TAs and I should be able to read your message. **Please keep it clean** =) You may address any one of the three of us in your message, or all three of us, if you'd like!