

Fall 2020 CIS 3362 Homework #5: Number Theory
Check WebCourses for the due date

- 1) Without the aid of a computer program, determine the prime factorization of 12180168000. Show your work. You may do division in a calculator.
- 2) What is $\phi(12180168000)$?
- 3) Prove that $\phi(n) = n \prod_{p \in P(n)} \frac{p-1}{p}$, where the set $P(n)$ represents the set of unique prime factors of n . For example, $P(96) = \{2,3\}$ and $P(7000) = \{2,5,7\}$. Use the formula shown in class for $\phi(n)$ for the starting point of your proof.
- 3) Using Fermat's Theorem, determine the remainder when 7^{11596} is divided by 967.
- 4) Using Euler's Theorem, determine $99^{10754} \bmod 3104$.
- 5) Write a program that reads in an integer entered by the user (in between 2 and 1000) and determines if the integer is prime. If it is NOT prime, just report a proper divisor of the number less than 1 and end the program. If the number entered is prime, list out each primitive root of the prime number in between 2 and the number minus one, in numerical order.

Here are a couple sample runs of the program:

Sample 1

Enter n.

143

143 is not prime. It's smallest non-trivial divisor is 11.

Sample 2

Enter n.

17

17 is prime.

Its primitive roots are: 3 5 6 7 10 11 12 14