
Fall 2022 CIS 3362 Homework #7: Random Odds and Ends 

Check WebCourses for the due date 

 

1) (50 pts) It was mentioned in class that there is no fast solution to the Discrete Log problem. The 

only method discussed to solve it was to loop through all possible exponents x to see if ax ≡ b 

(mod p), given integers a and b and a prime number p. As long as multiplications and mods are 

assumed to take constant time, this algorithm solves the problem in O(p) time. However, there is 

a faster algorithm that is relatively simple (understandable within the scope of ideas taught in this 

class.) that cuts this run-time down to 𝑂(√𝑝). Here is how the algorithm works: 

Let n = ⌈√𝑝⌉. Then, if there is a valid solution x to the given discrete log problem, then there will 

exist integers c (1 ≤ c ≤ n) and d (0 ≤ d ≤ n)  such that: 

𝑎𝑛𝑐−𝑑 ≡ 𝑏 (𝑚𝑜𝑑 𝑝) 

Now, multiply this equation through by ad: 

𝑎𝑛𝑐 ≡ 𝑏𝑎𝑑  (𝑚𝑜𝑑 𝑝) 

Obviously, doing a double for loop through all possible values of c and d will have the same run 

time, O(p), as the original algorithm. 

But, we can do better by storing a table (map in Java, dictionary in Python) which maps each 

answer of the form 𝑎𝑛𝑐 (𝑚𝑜𝑑 𝑝) to the value of c that achieved it, and store this map in memory. 

Then, for each value of d, we can iteratively compute 𝑏𝑎𝑑  (𝑚𝑜𝑑 𝑝). For each of these answers, 

see if it is a key in the original map. If so, then this value of d “matches” with the output value c 

produced by the map, which means that the answer to the given query is simply nc – d. 

Note: if none of the values produced in the second separate for loop produces a hit in the map, then 

there is no exponent, x, which satisfies the given query. 

Let’s look at a quick illustration with p = 11, a = 2 and b = 6  

For this example n = ⌈√11⌉ = 4.  

In our map, we first store 5 → 1, because 24(1) ≡ 5 (mod 11). 

For each subsequent value, we can take the previous value and multiply it by 5, since this is 

equivalent to 24 mod 11. So the rest of the values in our map would be: 

3 → 2, because 24(2) ≡ 3 (mod 11). 

4 → 3, because 24(3) ≡ 4 (mod 11), and 

9 → 4, because 24(4) ≡ 9 (mod 11). 

Next, we start a variable = 6, the result we want. Since 6 isn’t in the map, we multiply 6 by the 

base 2, to get 1 mod 11. This indicates that 6(21) ≡ 1 (mod 11). (Notice that we are trying to match 



an answer of 5, 3, 4 or 9.) Next, we multiply this again by 2 to get 2, which is also not in the map. 

Next, when we multiply this by 2, we get 4, which is in the map. This indicates that 6(23) ≡ 4 (mod 

11), and our map tells us that 24(3) ≡ 4 (mod 11), which means that it must be the case that 24(3)-3 

= 29 ≡ 6 (mod 11), solving this instance of the discrete log problem. 

Write two functions (in Python or Java) with the following prototypes: 

 

Python 

def slowDiscLog(base,ans,mod) 

def sqrtDiscLog(base,ans,mod) 

 

Java 

public static long slowDiscLog(long base, long ans, long mod) 

public static long sqrtDiscLog(long base, long ans, long mod) 

 

Your functions should return the smallest non-negative integer x such that basex ≡ ans (mod mod). 

If no such integer exists, it should return -1. The functions will ONLY be tested on cases that work 

where mod is a prime number less than 2 billion, base is a primitive root of that prime number and 

ans is in between 2 and mod-2. (So, I will only test them on “regular” cases, so to speak, and no 

corner cases.) 

The first method should run in O(mod) time, just iteratively exponentiating base and checking if 

the current value is answer. 

The second method should run in O(√𝑚𝑜𝑑) time, using the algorithm described above. 

Test them yourself on these test cases and provide a table of correct answer and run times of 

both of your methods for that test case. 

Base Ans Mod X Time Slow Time Fast 

5 123456 1000000007    

5 87123456 1000000007    

211523205 1036204576 1999999973    

75853221 96317213 1450001227    

1003708272 1820444653 1910003723    

1204331962 505493879 1910003723    

 

 

 



2) (50 pts) Here is a cipher to break. It is encrypted using one of the classical schemes we learned 

about in class, which was tested in either Quiz 1 or Qujz 2. Good luck! 

 

mrsrlbfmmgmxlweamktcfclsaggvgugmvnlxcpkhtkmxmzageaocmdcsrtgr 

cvslgcrnpqcoaqhdhgcemhmhdhalgdcsadotblrsgmnhlkcsszhrgvkhgmoc 

mncehruahgcogevbchxhungmtrcmrkagirvogmeuageavgqmnxckscimlprp 

xrtnvpmdetnovulxxgmlurpmgdhavgrycshvharhgodmcecxcvvpconhcfvz 

hafhdw 

 

As always, discuss your whole process. What clues did you use to try to figure out what cipher 

was used. Describe what you did to try to break the cipher, and hopefully, determine both the 

plaintext and the key! (If you do, please include these in the write up.) 

 

3) (50 pts) This is another cipher to break. It doesn’t have a key, per se, but the system used is a 

“fixed” system, with the key embedded in it. In particular, the character at ciphertext position i (1 

based) is shifted by f(i+1) characters, where f(i+1) is some function with an integer output. The 

function is one that is based on a famous number sequence. Good luck! 

 

qtlrkvdxptjmvoeyiyhszegnrzovxzphplqojwiatpkiduoxeswjdupyqled 

uqgeorzdqmmfgpjxsgzfvvbcljiixjjrewrldfbfaiadcsvgvvhqjemadoiw 

mdghrjzqvbvtruwegmriiyftlnqgwaltnmriobayedsoqjjiajqmaqifntbd 

shkxgajsovnnvtipwggxrn 

 

As always, discuss your whole process. What clues did you use to try to figure out how each 

character was shifted. Describe what you did to try to break the cipher, and hopefully, determine 

both the plaintext and what the function f(x) used for creating the shift for each character is! (If 

you do, please include these in the write up.) 

 


