Fall 2022 CIS 3362 Homework #7: Random Odds and Ends
Check WebCourses for the due date

1) (50 pts) It was mentioned in class that there is no fast solution to the Discrete Log problem. The
only method discussed to solve it was to loop through all possible exponents x to see if a* = b
(mod p), given integers a and b and a prime number p. As long as multiplications and mods are
assumed to take constant time, this algorithm solves the problem in O(p) time. However, there is
a faster algorithm that is relatively simple (understandable within the scope of ideas taught in this

class.) that cuts this run-time down to 0(\/5). Here is how the algorithm works:

Letn= [\/ﬂ Then, if there is a valid solution x to the given discrete log problem, then there will
exist integers ¢ (1 <c<n)and d (0 <d <n) such that:

a™~4 = b (mod p)
Now, multiply this equation through by a“:
a™ = ba% (mod p)

Obviously, doing a double for loop through all possible values of ¢ and d will have the same run
time, O(p), as the original algorithm.

But, we can do better by storing a table (map in Java, dictionary in Python) which maps each
answer of the form a™¢ (mod p) to the value of c that achieved it, and store this map in memory.

Then, for each value of d, we can iteratively compute ba® (mod p). For each of these answers,
see if it is a key in the original map. If so, then this value of d “matches” with the output value c
produced by the map, which means that the answer to the given query is simply nc —d.

Note: if none of the values produced in the second separate for loop produces a hit in the map, then
there is no exponent, x, which satisfies the given query.

Let’s look at a quick illustration withp=11,a=2and b=16
For this example n = [V11] = 4.
In our map, we first store 5 = 1, because 2*™ = 5 (mod 11).

For each subsequent value, we can take the previous value and multiply it by 5, since this is
equivalent to 24 mod 11. So the rest of the values in our map would be:

3 > 2, because 24 = 3 (mod 11).
4 - 3, because 243 =4 (mod 11), and
9 = 4, because 2*® =9 (mod 11).

Next, we start a variable = 6, the result we want. Since 6 isn’t in the map, we multiply 6 by the
base 2, to get 1 mod 11. This indicates that 6(2) = 1 (mod 11). (Notice that we are trying to match



an answer of 5, 3, 4 or 9.) Next, we multiply this again by 2 to get 2, which is also not in the map.
Next, when we multiply this by 2, we get 4, which is in the map. This indicates that 6(2°) = 4 (mod
11), and our map tells us that 2*® = 4 (mod 11), which means that it must be the case that 24¢)3
=2%= 6 (mod 11), solving this instance of the discrete log problem.

Write two functions (in Python or Java) with the following prototypes:

Python

def slowDiscLog (base,ans,mod)

def sqgrtDisclLog (base, ans,mod)

Java
public static long slowDisclLog(long base, long ans, long mod)

public static long sgrtDiscLog(long base, long ans, long mod)

Your functions should return the smallest non-negative integer x such that base* = ans (mod mod).
If no such integer exists, it should return -1. The functions will ONLY be tested on cases that work
where mod is a prime number less than 2 billion, base is a primitive root of that prime number and
ans is in between 2 and mod-2. (So, I will only test them on “regular” cases, so to speak, and no
corner cases.)

The first method should run in O(mod) time, just iteratively exponentiating base and checking if
the current value is answer.

The second method should run in O(v'mod) time, using the algorithm described above.

Test them yourself on these test cases and provide a table of correct answer and run times of
both of your methods for that test case.

Base Ans Mod X Time Slow Time Fast
5 123456 1000000007
5 87123456 1000000007
211523205 1036204576 1999999973
75853221 96317213 1450001227
1003708272 | 1820444653 1910003723
1204331962 | 505493879 1910003723




2) (50 pts) Here is a cipher to break. It is encrypted using one of the classical schemes we learned
about in class, which was tested in either Quiz 1 or Qujz 2. Good luck!

mrsrlbfmmgmxlweamktcfclsaggvgugmvnlxcpkhtkmxmzageaocmdcsrtgr
cvslgcrnpgcoaghdhgcemhmhdhalgdcsadotblrsgmnhlkesszhrgvkhgmoc
mncehruahgcogevbchxhungmtrcmrkagirvogmeuageavggmnxckscimlprp
xrtnvpmdetnovulxxgmlurpmgdhavgrycshvharhgodmcecxcvvpconhcfvz
hafhdw

As always, discuss your whole process. What clues did you use to try to figure out what cipher
was used. Describe what you did to try to break the cipher, and hopefully, determine both the
plaintext and the key! (If you do, please include these in the write up.)

3) (50 pts) This is another cipher to break. It doesn’t have a key, per se, but the system used is a
“fixed” system, with the key embedded in it. In particular, the character at ciphertext position i (1
based) is shifted by f(i+1) characters, where f(i+1) is some function with an integer output. The
function is one that is based on a famous number sequence. Good luck!

gtlrkvdxptijmvoeyivhszegnrzovxzphplgojwiatpkiduoxeswjdupygled
uggeorzdgmmfgpjxsgzfvvbcljiixjjrewrldfbfaiadcsvgvvhgjemadoiw
mdghrjzgvbvtruwegmriiyftlnggwaltnmriobayedsogjjiajgmagifntbd
shkxgajsovnnvtipwggxrn

As always, discuss your whole process. What clues did you use to try to figure out how each
character was shifted. Describe what you did to try to break the cipher, and hopefully, determine
both the plaintext and what the function f(x) used for creating the shift for each character is! (If
you do, please include these in the write up.)



