Competitive Training Camp
Lecture 10

=== Christian Yongwhan Lim
Wednesday, July 23, 2025

Overview: Graphs, Revisited!

e Lowest Common Ancestor
e Centroid Decomposition
e Heavy-Light Decomposition

Lowest Common Ancestor (LCA): Euler Tour first!

Vertices: |1 |25 (2|6|2|1|3|1(4]|7

Heights: =1 -2 3 23 120]2 3

Lowest Common Ancestor (LCA): Example

e The tour starting at vertex 6 and ending at 4 we visit the vertices [6, 2, 1,
3,1,4].

e Among those vertices the vertex 1 has the lowest height.

e Therefore, LCA(6,4)=1!

Lowest Common Ancestor (LCA): Example

e In general, once we pre-process the nodes using Euler tour, you can do a
range minimum query.

e We know this can be solved using segment tree (or, sparse table, if the
tree is fixed!)

Lowest Common Ancestor (LCA): Implementation

struct LCA {
vector<int> height, euler, first, segtree;
vector<bool> visited;
int n;

Lowest Common Ancestor (LCA): Implementation

LCA(vector<vector<int>> &adj, int root = 0) {
n = adj.size();
height.resize(n);
first.resize(n);
euler.reserve(n * 2);
visited.assign(n, false);
dfs(adj, root);
int m = euler.size();
segtree.resize(m * 4);
build(1, 8, m - 1);

Lowest Common Ancestor (LCA): Implementation

void dfs(vector<vector<int>> &adj, int node, int h=0) {
visited[node] = true;
height[node] = h;
first[node] = euler.size();
euler.push_back(node) ;
for (auto to : adj[node])
if (!visited[to]) A
dfs(adj, to, h + 1);
euler .push_back(node) ;

}

Lowest Common Ancestor (LCA): Implementation

void build(int node, int b, int e) {

if (b == e) {
segtree[node] = euler[b];

} else {
int mid = (b + e) / 2;
build(node << 1, b, mid);
build(node << 1 | 1, mid + 1, e);
int 1 = segtree[node<<1], r = segtree[node<<1]|1];
segtree[node] = (height[1] < height[r]) ? 1 : r;

Lowest Common Ancestor (LCA): Implementation

int query(int node, int b, int e, int L, int R) {
if (b > R || e < L) return -1;
if (b >= L & e <= R) return segtree[node];
int mid = (b + e) >> 1;
int left = query(node << 1, b, mid, L, R);
int right = query(node << 1 | 1, mid + 1, e, L, R);
if (left == -1) return right;
if (right == -1) return left;
return height[left] < height[right] ? left : right;

Lowest Common Ancestor (LCA): Implementation

int lca(int u, int v) {
int left = first[u], right = first[v];
if (left > right)
swap(left, right);
return query(1, 0, euler.size() - 1, left, right);
}
I

Centroid

e Centroid; a node such that when the tree is rooted at it, no other nodes
have a subtree of size greater than n/2.

e We can find a centroid in a tree by starting at the root.
Each step, loop through all of its children.
If all of its children have subtree size less than or equal to n/2, theniitis a
centroid.

e Otherwise, move to the child with a subtree size that is more than n/2 and
repeat until you find a centroid.

Centroid Illustration

Centroid

Centroid

const int maxn = 200010;
int n;

vector<int> adj[maxn];
int subtree_size[maxn];

Centroid

int get_subtree_size(int node, int par = -1) {
int &res = subtree_size[node];
res = 1;
for (int i : adj[node]) {
if (i == par) continue;
res += get_subtree_size(i, node);

}

return res;

}

Centroid

int get_centroid(int node, int par = -1) {
for (int i : adj[node]) {
if (i == par) continue;
if (subtree_size[i] * 2 > n)
return get_centroid(i, node);
}

return node;

}

Centroid Decomposition

e Centroid Decomposition works by repeated splitting the tree and each
of the resulting subgraphs at the centroid, producing O(log n) layers of
subgraphs.

Centrmd Decomp05|t|on Illustration

Centroid Decomposition

bool r[MN]; // removed

int s[MN]: // subtree size
int dfs(int n, int p = 0) {
s[n] = 1;

for (int x : a[n])
if (x '= p && !r[x]) s[n] += dfs(x, n);
return s[n];

}

Centroid Decomposition

int get_centroid(int n, int ms, int p = 0) {
// n = node, ms = size of tree, p = parent
for (int x : a[n])
if (x = p && !'r[x])
if (s[x] * 2 > ms)
return get_centroid(x, ms, n);
return n;

Centroid Decomposition

void centroid(int n = 1) {
int C = get_centroid(n, dfs(n));

// do something

r(C] = 1;
for (int x : a[C])
if (!'r[x]) centroid(x);

Heavy edge vs Light edge

e Heavy edge: the edge that connects a node to its
maximum size subtree (break ties arbitrarily)

e Light edge: an edge that's not heavy

Heavy edge vs Light edge

e Heavy edge: the edge that connects a node to its
maximum size subtree (break ties arbitrarily)

e Light edge: an edge that's not heavy

e Considering only heavy edges (highlighted in red),
we obtain our heavy chains (circled in green)

e This gives us “groupings” of nodes on a tree but

can we prove that this makes updates and queries

efficient?

Heavy edge

e Let G be arooted tree of n vertices, with an arbitrary root.
e Let's calculate for each vertex v, the size of its subtree s(v), the number of

vertices in the subtree of the vertex v including itself.

e Formally, we can an edge heavy if it leads to a vertex c such that:

s(v)

s(c) > — = edge (v, ¢) is heavy

Heavy-Light Decomposition

e Suppose we want to process some query for o

vertices u and v.
e Without loss of generality, consider the path (u, o o

lca(u, V)). ° o ° °

e Suppose we travel down the tree along the path,

every new heavy chain means if we go through a °

light edge then subtree size is at least halved. o °
e Then there are O(log n) heavy chains on any path

(U, v).

Heavy-Light Decomposition (con't)

e Heavy-light decomposition decomposes the tree o

into disjoint heavy chains so that every path

consists of O(log n) chains. o o
e Each heavy chain is maintained by a segment tree ° o ° °

for efficient range queries.
e Since the chains are disjoint, point updates take °

O(log n) time. o °

e Path queries take O(log? n) time.

Update

e Suppose we want to update a node’s value in the o
tree:
o Straightforward segment tree update! o o
e Note that path updating would follow the same ° o °
approach. °

Query

e Suppose we want to compute the sum of a path (u,
V).

e Similar to efficient LCA-finding, we start with the
respective chains that nodes u and v are in.

e We repeatedly query for range sum in the lower of
the two chains until we arrive at the chain

containing the LCA, where we query a final time.

Step by Step Example

e Calculate sum along path between two nodes using
HLD (values are same as node)
e Query: Node 10 to Node 14
o Currentsum: 10
e Query: Node 5 to Node 14
o Currentsum: 10+ 14
e Query: Node 5 to Node 7
o Currentsum: 10+ 14+ 7
e Query: Node 5 to Node 3
o Currentsum:10+14+7+3
e Query: Node 5 to Node 1
o Currentsum:10+14+7+3+(1+2+5)

Implementation Details

vector<int> parent, depth, heavy, head, pos;
int cur_pos;

Implementation Details

int dfs(int v, vector<vector<int>> const& adj) {
int size = 1, max_c_size = 0;
for (int c¢ : adj[v]) A
if (¢ !'= parent[v]) {
parent[c] = v, depth[c] = depth[v] + 1;
int c_size = dfs(c, adj);
size += c_size;
if (c_size > max_c_size)
max_c_size = c_size, heavy[v] = c;
}

}

return size;

}

Implementation Details

void decompose(int v, int h,
vector<vector<int>> const& adj) {
head[v] = h, pos[v] = cur_pos++;
if (heavy[v] !'= -1)
decompose(heavy[v], h, adj);
for (int c¢ : adj[v]) A
if (c !'= parent[v] && ¢ != heavy[V])
decompose(c, c, adj);

Implementation Details

void init(vector<vector<int>> const& adj) {
int n = adj.size();
parent = vector<int>(n);
depth = vector<int>(n);
heavy = vector<int>(n, -1);
head = vector<int>(n);
pos = vector<int>(n);
cur_pos = 0;

dfs(0, adj);
decompose (0, 0, adj);

Maximum Query Example

int query(int a, int b) {
int res = 0;
for (; head[a] != head[b]; b = parent[head[b]]) {
if (depth[head[a]] > depth[head[b]]) swap(a, b);
int cur_heavy_path_max = segment_tree_query(pos[head[b]],
pos[b]);
res = max(res, cur_heavy_path_max);
}
if (depth[a] > depth[b]) swap(a, b);
int last_heavy_path_max = segment_tree_query(pos[a], pos[b]);
res = max(res, last_heavy_path_max);
return res;

Example Uses

e Maximum value on the path between two vertices.
e Sum of the numbers on the path between two vertices.
e Repainting the edges of the path between two vertices.

	Slide 1: Competitive Training Camp Lecture 10
	Slide 2: Overview: Graphs, Revisited!
	Slide 3: Lowest Common Ancestor (LCA): Euler Tour first!
	Slide 4: Lowest Common Ancestor (LCA): Example
	Slide 5: Lowest Common Ancestor (LCA): Example
	Slide 6: Lowest Common Ancestor (LCA): Implementation
	Slide 7: Lowest Common Ancestor (LCA): Implementation
	Slide 8: Lowest Common Ancestor (LCA): Implementation
	Slide 9: Lowest Common Ancestor (LCA): Implementation
	Slide 10: Lowest Common Ancestor (LCA): Implementation
	Slide 11: Lowest Common Ancestor (LCA): Implementation
	Slide 12: Centroid
	Slide 13: Centroid Illustration
	Slide 14: Centroid
	Slide 15: Centroid
	Slide 16: Centroid
	Slide 17: Centroid Decomposition
	Slide 18: Centroid Decomposition Illustration
	Slide 19: Centroid Decomposition
	Slide 20: Centroid Decomposition
	Slide 21: Centroid Decomposition
	Slide 22: Heavy edge vs Light edge
	Slide 23: Heavy edge vs Light edge
	Slide 24: Heavy edge
	Slide 25: Heavy-Light Decomposition
	Slide 26: Heavy-Light Decomposition (con't)
	Slide 27: Update
	Slide 28: Query
	Slide 29: Step by Step Example
	Slide 30: Implementation Details
	Slide 31: Implementation Details
	Slide 32: Implementation Details
	Slide 33: Implementation Details
	Slide 34: Maximum Query Example
	Slide 35: Example Uses

