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● Binary Indexed Tree

● Segment Tree

● Sparse

● Treap

Overview: Data Structures



● sum(l, r)
● add(idx, delta)

Binary Indexed Tree / Fenwick Tree



Binary Indexed Tree / Fenwick Tree
struct FenwickTree {
vector<int> bit;
int n;
FenwickTree(int n) {
this->n = n;
bit.assign(n, 0);

}
int sum(int r);
int sum(int l, int r);
void add(int idx, int delta);

};



int sum(int r) {
int ret = 0;
for (; r >= 0; r = (r & (r + 1)) - 1)
ret += bit[r];

return ret;
}

int sum(int l, int r) {
return sum(r) - sum(l - 1);

}

Binary Indexed Tree / Fenwick Tree



Binary Indexed Tree / Fenwick Tree
void add(int idx, int delta) {
for (; idx < n; idx = idx | (idx + 1))
bit[idx] += delta;

}



● update(i, x)
● sum(l, r)

Segment Tree: Point Update & Range Query



Segment Tree: Example: sum(2,4)



Segment Tree: Example: update(2,3)



int n, t[4*MAXN];
void build(int a[], int v, int tl, int tr) {
if (tl == tr) {
t[v] = a[tl];

} else {
int tm = (tl + tr) / 2;
build(a, v*2, tl, tm);
build(a, v*2+1, tm+1, tr);
t[v] = t[v*2] + t[v*2+1];

}
}

Segment Tree: Implementation



int sum(int v, int tl, int tr, int l, int r) {
if (l > r)
return 0;

if (l == tl && r == tr) {
return t[v];

}
int tm = (tl + tr) / 2;
return sum(v*2, tl, tm, l, min(r, tm))

+ sum(v*2+1, tm+1, tr, max(l, tm+1), r);
}

Segment Tree: Implementation



Segment Tree: Implementation
void update(int v, int tl, int tr,

int pos, int new_val) {
if (tl == tr) t[v] = new_val;
else {
int tm = (tl + tr) / 2;
if (pos <= tm) update(v*2, tl, tm, pos, new_val);
else update(v*2+1, tm+1, tr, pos, new_val);
t[v] = t[v*2] + t[v*2+1];

}
}



● update(l, r, add)
● max(l, r)

● update, only when you need to!

Lazy Segment Tree: Range Update & Range Query



void push(int v) {
t[v*2] += lazy[v];
lazy[v*2] += lazy[v];
t[v*2+1] += lazy[v];
lazy[v*2+1] += lazy[v];
lazy[v] = 0;

}

Lazy Segment Tree: Implementation



void update(int v, int tl, int tr,
int l, int r, int add) {

if (l > r) return;
if (l == tl && tr == r) t[v] += add, lazy[v] += add;
else {
push(v);
int tm = (tl + tr) / 2;
update(v*2, tl, tm, l, min(r, tm), add);
update(v*2+1, tm+1, tr, max(l, tm+1), r, add);
t[v] = max(t[v*2], t[v*2+1]);

}
}

Lazy Segment Tree: Implementation



Lazy Segment Tree: Implementation
int query(int v, int tl, int tr, int l, int r) {
if (l > r)
return -INF;

if (l == tl && tr == r)
return t[v];

push(v);
int tm = (tl + tr) / 2;
return max(query(v*2, tl, tm, l, min(r, tm)),

query(v*2+1, tm+1, tr, max(l, tm+1), r));
}



● update(l, r, new_val, k)
● sum(l, r, k)

● Use vertex struct!

Persistent Segment Tree: Save History



● st[i][j] stores answer for the range [j, j+2i-1] of length 2i.

● most range queries can be answered in O(log n)

● range minimum query can be in O(1)(!).

● the caveat is the data must be immutable!

Sparse Table



long long st[K + 1][MAXN];

std::copy(array.begin(), array.end(), st[0]);

for (int i = 1; i <= K; i++)
for (int j = 0; j + (1 << i) <= N; j++)
st[i][j] = st[i - 1][j]

+ st[i - 1][j + (1 << (i - 1))];

Sparse Table: Range Sum Queries



Sparse Table: Range Sum Queries: sum(L,R)
long long sum = 0;
for (int i = K; i >= 0; i--) {
if ((1 << i) <= R - L + 1) {
sum += st[i][L];
L += 1 << i;

}
}



● The range minimum of [1, 6]  is clearly the same as the minimum of the 

range minimum of [1, 4]  and the range minimum of [3, 6] .

● Generally, we can compute the minimum of the range [L,R] with:

min(st[i][L], st[i][R-2i+1]) where i=log2(R-L+1)

Sparse Table: Range Minimum Queries



int lg[MAXN+1];
lg[1] = 0;
for (int i = 2; i <= MAXN; i++)
lg[i] = lg[i/2] + 1;

Sparse Table: Range Minimum Queries: Pre-computation



int st[K + 1][MAXN];
std::copy(array.begin(), array.end(), st[0]);
for (int i = 1; i <= K; i++)
for (int j = 0; j + (1 << i) <= N; j++)
st[i][j] = min(st[i - 1][j],

st[i - 1][j + (1 << (i - 1))]);

Sparse Table: Range Minimum Queries: Implementation



Sparse Table: Range Minimum Queries: min(L,R)
int i = lg[R - L + 1];
int minimum = min(st[i][L], st[i][R - (1 << i) + 1]);



● Combines binary tree and binary heap

● Hence, the name: tree + heap => treap

● Stores pairs (X, Y)  in a binary tree in such 

a way that it is a binary search tree by X 

and a binary heap by Y .

Treap (Cartesian Tree)



● Split(T,X)
● Merge(T1,T2)
● Insert(X,Y)
● Search(X)
● Erase(X)
● Build(X1,..., XN)
● Union(T1,T2)
● Intersect(T1,T2)

Treap
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