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Overview: Data Structures

Binary Indexed Tree
Segment Tree
Sparse

Treap



Binary Indexed Tree / Fenwick Tree

e sum(l, r)
e add(idx, delta)
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Binary Indexed Tree / Fenwick Tree

struct FenwickTree {
vector<int> bit;
int n;
FenwickTree(int n) {
this->n = n;
bit.assign(n, 9);
}
int sum(int r);
int sum(int 1, int r);
void add(int idx, int delta);



Binary Indexed Tree / Fenwick Tree

int sum(int r) {
int ret = 9;
for (; r>=06; r=(r & (r+1)) -1)
ret += bit[r];
return ret;

}

int sum(int 1, int r) {
return sum(r) - sum(l - 1);

}



Binary Indexed Tree / Fenwick Tree

void add(int idx, int delta) {
for (; idx < n; idx = idx | (idx + 1))
bit[idx] += delta;



Segment Tree: Point Update & Range Query

e update(i, x)
e sum(1l, r)



Segment Tree: Example: sum(2,4)

[o0,..1) cl2---2)] fals.. 31 [ alé-.. 4]

=




Segment Tree: Example: update(2,3)
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Segment Tree: Implementation

int n, t[4*MAXN]:
void build(int af[], int v, int tl, int tr) {
if (tl == tr) {
t[v] = a[tl];
} else {
int tm = (tl + tr) / 2;
build(a, v*2, tl, tm);
build(a, v*2+1, tm+1, tr);
tlv] = tlv*2] + t[v*2+1];



Segment Tree: Implementation

int sum(int v, int tl, int tr, int 1, int r) {
if (1 > r)
return 90;
if (1 == tl1 && r == tr) {
return t[v];

}
int tm = (tl + tr) / 2;
return sum(v*2, tl, tm, 1, min(r, tm))
+ sum(v*2+1, tm+1, tr, max(l, tm+1), r);



Segment Tree: Implementation

void update(int v, int tl, int tr,
int pos, int new_val) {

if (tl == tr) t[v] = new_val;

else {
int tm = (tl + tr) / 2;
if (pos <= tm) update(v*2, tl, tm, pos, new_val);
else update(v*2+1, tm+1, tr, pos, new_val);
tlv] = tlv*2] + t[v*2+1];



Lazy Segment Tree: Range Update & Range Query

e update(l, r, add)
e max(1l, r)

e update, only when you need to!



Lazy Segment Tree: Implementation

void push(int v) {
t[v*2] += lazy[v];
lazy[v*2] += lazy[v];
t[v*2+1] += lazy[v];
lazy[v*2+1] += lazy[v];
lazy[v] = 0;

}



Lazy Segment Tree: Implementation

void update(int v, int tl, int tr,
int 1, int r, int add) {
if (1 > r) return;
if (1 == t1 && tr == r) t[v] += add, lazy[v] += add;
else {
push(v);
int tm = (tl + tr) / 2;
update(v*2, tl, tm, 1, min(r, tm), add);
update(v*2+1, tm+1, tr, max(1l, tm+1), r, add);
t{v] = max(t[v*2], t[v*2+1]);



Lazy Segment Tree: Implementation

int query(int v, int tl, int tr, int 1, int r) {
if (1 > r)
return -INF;
if (1 == tl1 && tr == r)
return t[v];
push(v);
int tm = (tl + tr) / 2;
return max(query(v*2, tl, tm, 1, min(r, tm)),
query(v*2+1, tm+1, tr, max(l, tm+1), r));



Persistent Segment Tree: Save History

e update(l, r, new_val, k)
e sum(l, r, k)

e Use vertex struct!



Sparse Table

e st[i][j] storesanswer fortherange [j, j+21-1] of length 2.

e most range queries can be answered in O(log n)
e range minimum query can be in O(1)(!).

e the caveat is the data must be immutable!



Sparse Table: Range Sum Queries
long long st[K + 1][MAXN];

std::copy(array.begin(), array.end(), st[@]);

for (int 1 = 1; i <= K; i++)
for (int j =0; j + (1 << 1) <= N; j++)
stl[i][j] = stli - 1][j]

+ st[i - 1][j + (1 << (1 - 1))];



Sparse Table: Range Sum Queries: sum(L,R)

long long sum = 0;
for (int i = K; i >= 0; i--) {
if ((1 << i) <= R - L + 1) {
sum += st[i][L];
L += 1 << 1;
Y
}



Sparse Table: Range Minimum Queries

e The range minimum of [1, 6] is clearly the same as the minimum of the
range minimum of [1, 4] and the range minimum of [3, 6].

e Generally, we can compute the minimum of the range [L, R] with:

min(st[i][L], st[i][R-21+1]) where i=log,(R-L+1)



Sparse Table: Range Minimum Queries: Pre-computation

int 1g[MAXN+1];

1g[1] = o;

for (int i = 2; i <= MAXN; i++)
1g[i] = 1g[i/2] + 1;



Sparse Table: Range Minimum Queries: Implementation

int st[K + 1][MAXN]:
std: :copy(array.begin(), array.end(), st[0]);
for (int 1 = 1; i <= K; i++)
for (int j = 0; j + (1 << 1) <= N; j++)
st[i][j] = min(stli - 1][j],
st[i - 1][j + (1 << (1 -1))]);



Sparse Table: Range Minimum Queries: min(L,R)

int i = 1g[R - L + 1];
int minimum = min(st[i][L], st[i][R - (1 << i) + 1]);



Treap (Cartesian Tree)

e Combines binary tree and binary heap
e Hence, the name: tree + heap => treap

(18, 11)

e Stores pairs (X, Y) in a binary tree in such
a way that it is a binary search tree by X
and a binary heap by Y.

(19, 2
10, 1) «18,1)
2 4 6 8 10 12 14 16 18 20 22




Treap

Split(T,X)
Merge(T,,T,)
Insert(X,Y)
Search(X)
Erase(X)
Build(X,, ..., Xy)
Union(T,, T,)
Intersect(T,,T,)
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