
Competitive Training Camp
Lecture 7

Christian Yongwhan Lim
Monday, July 21, 2025

● String Hashing

● Rabin-Karp

● Longest Common Prefix (LCP)

Overview: Strings

String Hashing: Main Idea

String Hashing: Implementation
long long compute_hash(string const& s) {

const int p = 31;
const int m = 1e9 + 9;
long long hash_value = 0;
long long p_pow = 1;
for (char c : s) {

hash_value = (hash_value + (c-'a'+1)*p_pow)%m;
p_pow = (p_pow * p) % m;

}
return hash_value;

}

Example Problem

● Given a list of  n  strings si , each no longer than  m characters, find all the

duplicate strings and divide them into groups.

Solution
vector<vector<int>>
group_identical_strings(vector<string> const& s) {

int n = s.size();
vector<pair<long long, int>> hashes(n);
for (int i = 0; i < n; i++)

hashes[i] = {compute_hash(s[i]), i};
sort(hashes.begin(), hashes.end());

Solution
vector<vector<int>> groups;
for (int i = 0; i < n; i++) {

if (i == 0 ||
hashes[i].first != hashes[i-1].first)
groups.emplace_back();

groups.back().push_back(hashes[i].second);
}
return groups;

}

Fast hash calculation of substrings of given string

● Given a string s and indices i and j , find the hash of the substring

s[i...j].

Solution

Applications

● Rabin-Karp algorithm for pattern matching in a string in O(n) time.

● Calculating the number of different substrings of a string in O(n2 log n)

Determine the number of different substrings in a string

● Given a string s of length n , consisting only of lowercase English letters,

find the number of different substrings in this string.

Solution
int count_unique_substrings(string const& s) {

int n = s.size();
const int p = 31;
const int m = 1e9 + 9;
vector<long long> p_pow(n);
p_pow[0] = 1;
for (int i = 1; i < n; i++)

p_pow[i] = (p_pow[i-1] * p) % m;
vector<long long> h(n + 1, 0);
for (int i = 0; i < n; i++)

h[i+1] = (h[i] + (s[i]-'a'+1) * p_pow[i]) % m;

Solution (con't)
int cnt = 0;
for (int l = 1; l <= n; l++) {

set<long long> hs;
for (int i = 0; i <= n - l; i++) {

long long cur_h = (h[i + l]+m-h[i]) % m;
cur_h = (cur_h * p_pow[n-i-1]) % m;
hs.insert(cur_h);

}
cnt += hs.size();

}
return cnt;

}

Rabin-Karp (1987): Problem

● Given two strings - a pattern s and a text t , determine if the pattern

appears in the text and if it does, enumerate all its occurrences in O(|s|
+ |t|) time.

Rabin-Karp (1987): Main Idea

● Calculate the hash for the pattern s.

● Calculate hash values for all the prefixes of the text t.

● Now, we can compare a substring of length |s| with s in constant time

using the calculated hashes.

● So, compare each substring of length |s| with the pattern.

● This will take a total of O(|t|) time.

● Hence the final complexity of the algorithm is O(|t|+|s|)
○ O(|s|) is required for calculating the hash of the pattern and;

○ O(|t|)  for comparing each substring of length |s| with the pattern.

vector<int> rabin_karp(string const& s,
string const& t) {

const int p = 31;
const int m = 1e9 + 9;
int S = s.size(), T = t.size();
vector<long long> p_pow(max(S, T));
p_pow[0] = 1;
for (int i = 1; i < (int)p_pow.size(); i++)

p_pow[i] = (p_pow[i-1] * p) % m;

Rabin-Karp: Implementation

vector<long long> h(T + 1, 0);
for (int i = 0; i < T; i++)

h[i+1] = (h[i] + (t[i]-'a'+1) * p_pow[i]) % m;
long long h_s = 0;
for (int i = 0; i < S; i++)

h_s = (h_s + (s[i]-'a'+1) * p_pow[i]) % m;

Rabin-Karp: Implementation

vector<int> occurences;
for (int i = 0; i + S - 1 < T; i++) {

long long cur_h = (h[i+S] + m - h[i]) % m;
if (cur_h == h_s * p_pow[i] % m)

occurences.push_back(i);
}
return occurences;

}

Rabin-Karp: Implementation

Longest Common Prefix (LCP)

● For a given string s, we want to compute the longest common prefix (LCP)

of two arbitrary suffixes with position i and j.

● We can use suffix array and Kasai's algorithm to compute this in O(n).

● Finding a substring in a string.

● Comparing two substrings of a string.

● Number of different substrings.

Example Problems

	Slide 1: Competitive Training Camp Lecture 7
	Slide 2: Overview: Strings
	Slide 3: String Hashing: Main Idea
	Slide 4: String Hashing: Implementation
	Slide 5: Example Problem
	Slide 6: Solution
	Slide 7: Solution
	Slide 8: Fast hash calculation of substrings of given string
	Slide 9: Solution
	Slide 10: Applications
	Slide 11: Determine the number of different substrings in a string
	Slide 12: Solution
	Slide 13: Solution (con't)
	Slide 14: Rabin-Karp (1987): Problem
	Slide 15: Rabin-Karp (1987): Main Idea
	Slide 16: Rabin-Karp: Implementation
	Slide 17: Rabin-Karp: Implementation
	Slide 18: Rabin-Karp: Implementation
	Slide 19: Longest Common Prefix (LCP)
	Slide 20: Example Problems

