Competitive Training Camp
Lecture /

=== Christian Yongwhan Lim
Monday, July 21, 2025

Overview: Strings

e String Hashing
e Rabin-Karp
e Longest Common Prefix (LCP)

String Hashing: Main ldea

hash(s) = s[0] + s[1] - p + s[2] - p*+... +s[n— 1] - p" ' mod m

String Hashing: Implementation

long long compute_hash(string const& s) {

const int p = 31;

const int m = 1e9 + 9;

long long hash_value = 0;

long long p_pow = 1;

for (char ¢ : s) {
hash_value = (hash_value + (c-'a'+1)*p_pow)%m;
p_pow = (p_pow * p) % m;

}

return hash_value;

Example Problem

e Given alist of n strings s;, each no longer than m characters, find all the
duplicate strings and divide them into groups.

Solution

vector<vector<int>>
group_identical_strings(vector<string> const& s) {
int n = s.size();
vector<pair<long long, int>> hashes(n);
for (int 1 = 0; 1 < n; i++)
hashes[i] = {compute_hash(s[i]), i};
sort(hashes.begin(), hashes.end());

Solution

vector<vector<int>> groups;
for (int i = 0; 1 < n; i++) {
if (1 == 0 ||
hashes[i].first != hashes[i-1].first)
groups.emplace_back();
groups.back().push_back(hashes[i].second);
}

return groups;

Fast hash calculation of substrings of given string

e Given a string s and indices i and j, find the hash of the substring
s[i...jl.

Solution

h(s[0...j]) —hash(s[0...7 —1]) mod m

Applications

e Rabin-Karp algorithm for pattern matching in a string in 0(n) time.

e Calculating the number of different substrings of a string in 0(n2 log n)

Determine the number of different substrings in a string

e Given a string s of length n, consisting only of lowercase English letters,
find the number of different substrings in this string.

Solution

int count_unique_substrings(string const& s) {
int n = s.size();
const int p = 31;
const int m = 1e9 + 9;
vector<long long> p_pow(n);
p_pow[0] =
for (int i

= i < n; i++)
p_pow[i]

1
= (p_pow[i-1] * p) % m;
vector<long long> h(n + 1, 0);
for (int i = 0; i < n; 1++)
h[i+1] = (h[1] -+ (s[i]—'a'+1) * p_pow[i]) % m;

Solution (con't)

int cnt = 0;
for (int 1 = 1; 1 <= n; 1++) {
set<long long> hs;
for (int 1 = 0; i <= n - 1; i++) {
long long cur_h = (h[i + 1]+m-h[i]) % m;
cur_h = (cur_h * p_pow[n-i-1]) % m;
hs.insert(cur_h);

}

cnt += hs.size();

}

return cnt;

}

Rabin-Karp (1987): Problem

e Given two strings - a pattern s and a text t, determine if the pattern
appears in the text and if it does, enumerate all its occurrences in 0(| s |
+ |t|) time.

Rabin-Karp (1987): Main Idea

e C(Calculate the hash for the pattern s.

e C(alculate hash values for all the prefixes of the text t.

e Now, we can compare a substring of length | s| with s in constant time
using the calculated hashes.

e SO0, compare each substring of length | s| with the pattern.

e This will take a total of O(| t|) time.

e Hence the final complexity of the algorithmis O(|t|+]|s])
o 0(|s]|) isrequired for calculating the hash of the pattern and;
o 0(]t]) for comparing each substring of length | s| with the pattern.

Rabin-Karp: Implementation

vector<int> rabin_karp(string const& s,
string const& t)

const int p = 31;

const int m = 1e9 + 9;

int S = s.size(), T = t.size();

vector<long long p_pow(max(S, T));

p_pow[0] =

for (int i = 1 i < (int)p_pow.size(); i++)
p_pow[i] = (p_pow[i-1] * p) % m;

Rabin-Karp: Implementation

vector<long long> h(T + 1, 0);
for (int 1 = 0; i < T; i++)

h[i+1] (h[i] + (t[i]-"a'+1) * p_pow[i]) % m;
long long h_s = 0;
for (int i = @; i < S; i++)

h_s = (h_s + (s[i]-"a'+1) * p_pow[i]) % m;

Rabin-Karp: Implementation

vector<int> occurences;
for (int i =90; i +S -1 < T; i++) {
long long cur_h = (h[i+S] + m - h[i]) % m;
if (cur_h == h_s * p_pow[i] % m)
occurences.push_back(1i);

}

return occurences,

Longest Common Prefix (LCP)

e For a given string s, we want to compute the longest common prefix (LCP)
of two arbitrary suffixes with position i and j.

e We can use suffix array and Kasai's algorithm to compute this in O(n).

Example Problems

e Finding a substring in a string.
e Comparing two substrings of a string.
e Number of different substrings.

	Slide 1: Competitive Training Camp Lecture 7
	Slide 2: Overview: Strings
	Slide 3: String Hashing: Main Idea
	Slide 4: String Hashing: Implementation
	Slide 5: Example Problem
	Slide 6: Solution
	Slide 7: Solution
	Slide 8: Fast hash calculation of substrings of given string
	Slide 9: Solution
	Slide 10: Applications
	Slide 11: Determine the number of different substrings in a string
	Slide 12: Solution
	Slide 13: Solution (con't)
	Slide 14: Rabin-Karp (1987): Problem
	Slide 15: Rabin-Karp (1987): Main Idea
	Slide 16: Rabin-Karp: Implementation
	Slide 17: Rabin-Karp: Implementation
	Slide 18: Rabin-Karp: Implementation
	Slide 19: Longest Common Prefix (LCP)
	Slide 20: Example Problems

