
Weighted Graphs: Minimum Spanning Tree Algorithms 

 

Minimum Spanning Trees 

First let's define a tree, a spanning tree, and a minimum spanning tree: 

 

tree: A connected graph without cycles. (A cycle is a path that starts and ends at the same 

vertex.) 

 

spanning tree: a subtree of a graph that includes each vertex of the graph. A subtree of a 

given graph as a subset of the components of that given graph. (Naturally, these 

components must form a graph as well. Thus, if your subgraph can't just have vertices A 

and B, but contain an edge connecting vertices B and C.) 

 

Minimum spanning tree: This is only defined for weighted graphs. This is the spanning 

tree of a given graph whose sum of edge weights is minimum, compared to all other 

spanning trees. 

 

Crucial Fact about Minimum Spanning Trees 

Let G be a graph with vertices in the set V partitioned into two sets V1 and V2. Then the 

minimum weight edge, e,  that connects a vertex from V1 to V2 is part of a minimum 

spanning tree of G. 

 

Proof: Consider a MST T of G that does NOT contain the minimum weight edge e. This 

MUST have at least one edge in between a vertex from V1 to V2. (Otherwise, no vertices 

between those two sets would be connected.) Let G contain edge f that connects V1 to V2. 

Now, add in edge e to T. This creates a cycle. In particular, there was already one path 

from every vertex in V1 to V2 and with the addition of e, there are two. Thus, we can form 

a cycle involving both e and f. Now, imagine removing f from this cycle. This new graph, 

T' is also a spanning tree, but it's total weight is less than or equal to T because we replaced 

e with f, and e was the minimum weight edge. 

 

Each of the algorithms we will present works because of this theorem above. 

 

Each of these algorithms is greedy as well, because we make the "greedy" choice in 

selecting an edge for our MST before considering all edges. 

 

 

 

 

 

 

 

 
 



Prim's Algorithm 
We use the crucial fact about minimum spanning trees in this algorithm by starting with one 

vertex and "growing" a larger tree that ALWAYS stays connected. Thus, we start off with the set 

V1 having 1 vertex and V2 having the rest, and at each step, adding the minimum edge from V1 to 

V2 to our MST, which will then "grab" one new vertex at each step to add to V1 and remove from 

V2. When we are done, V2 will be empty! 

 

Here is the algorithm: 

 

1) Set V1 = . 

1) Pick any vertex in the graph to start at, say v, and add this to S. 

2) Add the minimum edge incident to that vertex to S. 

3) Continue to add edges into V1 (n-2 more times) using the 

     following rule: 

 

     Add the minimum edge weight to V1 that is incident to V1 

     but that doesn't form a cycle when added to V1. 

 

Once again, this works directly because of the theorem discussed before. In particular, the set you 

are growing is the partition of vertices and each edge you add is the smallest edge connecting that 

set to its complement. 

 

To implement step 2, use a priority queue of edges from V1. Each time a vertex gets added to V1, 

add each edge that leaves V1 to the priority queue. (This is in step 3.) 

 

When you remove items from the priority queue, you'll have some dummy edges that connect two 

vertices already in V1. Skip over these. In essence, this is your cycle detection. You know for a fact 

if the edge you pull from the priority queue connects something from V1 to V2, then it can't cause 

a cycle since nothing from V2 is connected to anything from V1. 

 

Kruskal's Algorithm 
The algorithm is executed as follows: 

 

Let V =  

For i=1 to n-1, (where there are n vertices in a graph) 

 V = V  e, where e is the edge with the minimum edge 

        weight not already in V, and that does NOT 

    form a cycle when added to V. 

Return V 

 

Basically, you build the MST of the graph by continually adding in the smallest weighted edge into 

the MST that doesn't form a cycle. When you are done, you'll have an MST. You HAVE to make 

sure you never add an edge the forms a cycle and that you always add the minimum of ALL the 

edges left that don't.  

 

The reason this works is that each added edge is connecting between two sets of vertices, and since 

we select the edges in order by weight, we are always selecting the minimum edge weight that 

connects the two sets of vertices. In order to do cycle detection here, we use a Disjoint Set. here are 

notes on how to implement a disjoint set. 

 



Disjoint Sets 

 

A disjoint set contains a set of sets such that in each set, an element is designated as a 

marker for the set. Here is a simple disjoint set: 

 

{1}, {2}, {3}, {4}, {5} 

 

clearly there can only be one marker for each of these sets. Given a disjoint sets, we can 

edit them using the union operation. For example: 

 

union(1,3) would make our structure look like: 

 

{1,3}, {2}, {4}, {5} 

 

Here we would have to designate either 1 or 3 as the marker. Let's choose 1. Now consider 

doing these two operations: 

 

union(1,4) 

union(2,5) (Assume 2 is marked.) 

 

Now we have: 

 

{1,3,4}, {2,5} 

 

Now, we can also do the findset operation. 

 

findset(3) should return 1, since 1 is the marked element in the set that contains 3. 

 

Disjoint Set Implementation 

 

A set within disjoint sets can be represented in several ways. Consider {2, 4, 5, 8} with 5 

as the marked element. Here are a few ways that could be stored: 

 

    5                   5                5 

  /  |  \              /    \              | 

2  4   8           2     8            8 

                      |                   /  \ 

                      4                 4   2 

 

We can actually store a disjoint set in an array. For example, the sets {2,4,5,8}, {1}, {3,6,7} 

could be stored as follows: 

 

1 5 7 5 5 7 7 2 

       1  2       3    4        5                 6                 7                8 

 



The 5 stored in array location 2 signifies that 5 is 2's parent. The 2 in array location 8 

signifies that 2 is 8's parent, etc. 

 

Here is the visual display: 

 

1  5                      7 

                    /      \                 /     \ 

       2        4              3      6 

                  | 

                  8 

 

Based on this storage scheme, how can do implement the initial makeset algorithm and 

how can we implement a findset algorithm? 

 

Union Operation 

 

Given two values, we must first find the markers for those two values, then merge those 

two trees into one. 

 

Consider union(5,1). We could do either of the following: 

 

     1  5 

      |         /  |  \ 

     5        2  4  1 

   /    \      | 

  2    4    8 

  | 

 8 

 

We prefer the latter since it minimizes the height of the tree. Thus, in order to implement 

our disjoint sets efficiently, we must also keep track of the height of each tree, so we know 

how to do our merges. Basically we choose which tree to merge with which based on which 

tree has a smaller height. If they are equal we are forced to add 1 to the height of the new 

tree. 

 

Here is how our array will change for each of the options above: 

 

First option 

1 5 7 5 1 7 7 2 

     1  2      3   4         5                 6                7               8 

 

Second option 

5 5 7 5 5 7 7 2 

     1  2        3   4         5                 6                7                8 

 

Notice how quickly we can implement that change in the array! 



Path Compression 

 

One last enhancement we can add to disjoint sets is path compression. Every time we are 

forced to do a findset operation, we can directly connect each node on the path from the 

original node to the root. Here's the basic idea: 

 

     1  final tree is  1 

      |                                            /   |   \ 

     5                                          2   8   5 

   /    \                                                   | 

  2    4                                                  4 

  | 

 8 

1 5 7 5 1 7 7 2 

     1   2        3     4         5                 6                7                8 

 

First, you find the root of this tree which is 1. Then you go through the path again, starting 

at 8, changing the parent of each of the nodes on that path to 1. 

 

1 5 7 5 1 7 7 1 

      1   2        3   4         5                6                 7                8 

 

then, you take the 2 that was previously stored in index 8, and then change the value in that 

index to 1: 

 

1 1 7 5 1 7 7 1 

      1   2        3    4         5                 6                7                8 

 

It has been shown through complicated analysis that the worst case running time of t 

operations is O(t(t,n)). Note that (t,n)  4 for all n  1019728, so for all practical purposes 

on average, each operation takes constant time. 

 

The code is on Webcourses, separately attached. 

 

 
 

 


