Two-Dimensional Geometry
Vectors

Basic Definition and Explanation

A vector is recording a relative change in position, but isn’t fixed to a particular point in space. In
two dimensions, a vector simply records a change in x and a change in y. For example, the vector
(2, 5) represents moving in a straight line from your current position (X, y) to the position (x+2,
y+5). Note that in many times, the difference between a fixed point in space and a vector isn’t
readily obvious and context has to be used to determine which is which. In the previous
explanation, (X, y) is a fixed point and (2, 5) is a vector. Often times, we’ll write the vector (2, 5)
as 2i + 5j, as i is often referred to as the unit vector in the direction of the positive x axis and j is
referred to as the unit vector in the positive y axis. A unit vector is simply a vector with magnitude
1. The magnitude of a vector is simply its length. Thus, the magnitude of the vector ai + bj is

Given two points A(x1, y1) and B(x2, y2), we can compute the vector AB as (X2 — X1, Y2 — y1). This
is the change from pt A to pt B. In essence this vector describes the position of B, relative to A.

Dot Product

The dot product between two vectors returns a scalar (a number). By definition, the dot product
between vectors vi = Xii + yij and v = Xai + yoj IS X1X2 + y1Yy2. It turns out that we can prove that
this dot product is ALSO equal to |vi||v2|cos 6, where 8 is the angle between the two vectors. In
short, if we want to know the angle between two known vectors, we can easily find it via the dot
product.

Example: What is the angle between u = 3i + 4j and v = 12i — 5j?

u-v=3(12)+4(-5) =16
u-v = |ullv|cosf = \/32 + 42\/122 + 52c0s6 = 65cos6
16 = 65co0s0, SO cosf = g, and 8 = cos™? (g) ~1.32 radians

Cross Product

The cross product between two vectors returns another vector. By definition, it returns a vector
perpendicular to both input vectors with a magnitude equal to the area of the parallelogram defined
by both vectors. When we are dealing with 2D geometry, the direction of the cross product is
always in the positive or negative z-axis. Thus, this cross product is always (0, 0, z). If z > 0, the
vector points in the positive z-axis. If z < 0, then it points in the negative z-axis. For two
dimensions, with vectors vi = Xxii + yij and vz = Xoi + Y»j, the cross product is (0, 0, X1y2 — X2Yy1).
Note that this is also written as 0i + 0j + (X1y2 — X2y1)K, since K is the name given to the unit vector
in the direction of the positive z-axis. Geometrically, a positive value for the k coefficient of the
dot product means that the second vector is counter-clockwise from the first vector by an angle
less than & radians. Often times in physics, this is referred to as the “right-hand rule”. Basically, in
determining the direction of the cross product, you use your right hand, sweeping across from the
first vector towards the second and the direction of your thumb is the direction of the resultant

vector. We can use the cross product to determine the signed area of a triangle (the sign just tells
you which direction you’re going in, from side to side), as well as testing if three points are
collinear.

Example 1: What is the area of the triangle formed by the following three points: (3, 7), (12, -8),
and (9, 16)?

Create two vectors from (3, 7) to the other two points. These are

9i — 15j and 6i + 9j. The cross product of these is (9(9) — (-15)(6))k = 171k.
The absolute value of the k coefficient is the area of the defined parallelogram.
Thus, the area of the defined triangle is just half of this, or 85.5.

Example 2: Are the following three points collinear: (3, 8), (19, 40), and (-2, -2)?

Create two vectors from (3, 8) to the other two points. These are

16i + 32j and -5i — 10j. Their cross product is 16(-10) — (32)(-5) = 0.
The points are collinear because sin of the angle between the vectors
is 0, consequently that angle is either 0 or & radians!

Line Equation in Two Dimensions

Now that we have a basis in vectors (sorry, bad joke...), we can define the vector equation of a
line, which tends to be better to use for programming contest problems than Cartesian equations
for lines. A line is defined by a point and a direction. Thus, the vector equation of a line looks like
this:

r=po+Aiv

where po is a point on the line and v is the directional vector in the direction of the line. Lambda
is a parameter such that for any point on the line, there exists a value of lambda that, when plugged
in, sets r equal to that point. Consider the following equation of a line:

r=(3,-5)+M2, 1)

This essentially means that (3, -5) is on the line and the direction of movement on the line is (2,
1). So, to reach an arbitrary point on the line, start at (3, -5) and move in the direction (2, 1) as far
as you want. Logically, this means we can set of a pair of equations solving for the x and y
coordinates of any point on the line in terms of lambda:

X=3+2A
y=-5+1)

These equations are known as parametric equations for the line. For example, if we plug in A =3,
we obtain x = 9 and y = -2. This means that (9, -2) is on the line as well. Each unique value we

plug in for lambda will produce a different point on the line. For each point on the line, there’s a
unique value of lambda that creates it.

Line Intersection in Two Dimensions
Now that we know how to express a line in both vector and parametric equations, we can learn
how to find the intersection of two lines as follows:

Write out each vector equation. Below ry is a line containing (X, y1) in the direction (ux, uy) and r>
is a line containing (X2, y2) in the direction (vx, vy). Note that we use different parameters because
simultaneously, we may care about points on ry and r2 that are created with different parameter
values. The only time we would use the same parameters if the parameter represented a time and
both equations described the movement of objects in time and the value of the parameter produced
the location of each particle at that point in time.

ri = (X1, y1) + Mux, Uy)
r2 = (X2, Y2) + H(Vx, Vy)

Parametrically, for both equations we get:

X = X1 + Uxh X =Xz + Vxd
y =yt uyh y=Y2+ Wi

In order for these lines to intersect, there must exist a value for A and a value for u, that when
plugged into both equations, produces the same point. Thus, for any intersection point, we must
have:

X1 + Uxh = X2 + Vxld
y1+ Uyl =y2 + vyl

The only unknown quantities are A and p. We can rewrite this as a typical pair of linear equations
in two variables as follows:

Uxh — Vx = X2 — X1
Uyh —Vyd = Y2 — Y1

By hand, we use many different techniques to solve a system like this and choose the one that
minimizes arithmetic. In code, it’s probably best to use Kramer’s Rule. If our system has a unique
solution and is

ax+hby=c
dx +ey=f

c b a c
then are solutions are: x = IZ —rand y = Iﬁ g. Recall that absolute value bars on the matrices
d e a e

indicates a determinant and for the 2 x 2 case, we have |‘Cl Z| = ad — bc.

If the denominator of these expressions is zero, this means the system does NOT have unique
solutions. Specifically, either the lines are coincidental (describing the same line), or they are
parallel and non-intersecting. To determine which is the case, pick two points on one line and one
line on the other, and test to see if they are collinear or not.

Line Segment Intersection in Two Dimensions

Do all the work described for regular line intersection and make sure that the vector of movement
is the vector of movement from the start point to the end point of the line segment. (You can
arbitrarily choose the start and end point unless the problem given specifies a direction of motion
where the time variable is meaningful.)

We can quickly see that the intersection point is on one segment if the corresponding parameter of
the solution is in between 0 and 1, inclusive. Thus, for the segments to actually intersect, BOTH
parameters must be in between 0 and 1 inclusive.

Finally, we have the tricky case of line segments both on coincidental lines. We must take one line
and test both endpoints of the other line against the first line. If both endpoints correspond to a
parameter greater than 1 or less than 0 on the first line, then there’s no intersection. Otherwise,
there is.

Example: Do the line segments (3, 9) to (18, -6) and (-4, 16) to (2, 10) intersect?

In solving the appropriate set of equations, we find that the lines are coincidental. Now, our first
line, written parametrically is:

x=3+ 151
y=9-15A

Find the value of A that corresponds to the point (-4, 16): Just set 3 + 15X = -4, yielding A = -7/15.
Find the value of A that corresponds to the point (2, 10): Just set 3 + 15X = 2m yielding A = -1/15.

Since both of these are less than 0, there is no intersection.

If we move the second point of the second segment to be (4, 8), then its A = 1/15 and there would
be an intersection.

Alternatively, if we move the second point of the second segment to be (20, -8), then its A= 17/15
would still indicate an intersection because both values aren’t either less than 0 or greater than 1.

Point Line Distance
Let the line be formed with points s and e, so the direction vector of the line is e - s, and let the
point in question be the point p. Draw a vector from s to p. Then label the angle formed by points
p, s and e to be theta.

|sp|

i} a
o

!
s [se] e

sin(theta)=d/|sp|

The desired distance is the line drawn from p down to se that is perpendicular to se. This line
segment is also the height of a right triangle with points s and p. Label the desired distance d, then

sinf = |Sd_p|' so the desired distance is d = |sp|siné.

But, notice that this looks very similar to the magnitude of a cross product of the vectors se and
sp. In fact, the only thing missing in it is the magnitude of se. Recall that |sp X se| = |sp||se|sinf.
Dividing this quantity by |se| yields the expression above.

It follows that the distance between a point p, and a line defined by the points s and e is:

e Ispl|se|sind _ |sp X se]

|se| N |se|

Circle-Circle Intersection

Let circles C1 and C2 have radii r1 and r2, respectively. If the distance between C; and C, exceeds
I + rz, there is no intersection. If this distance is equal, then there’s one intersection, which is on
both circles and the line segment between both centers. If this distance is less then we have two
intersections. Here is a picture:

Since we know r1 and r2 and the distance between the two centers, we know all three of sides of
the two congruent triangles in the picture. This allows for us to solve for all three angles in these
triangles. Using the atan2 function, we can get the directional angle from C; to C, add/subtract to
it the appropriate angle in the triangle to get the new directional angle from C; to each intersection
point. We can move along each of these vectors a distance of r; to get the solution points.

If we want to fine the area of that “eye-shaped” region, we can calculate the sum of two sector
minus triangle calculations. Here is an illustration of one such calculation:

The area of the sector is %rz while the area of the triangle is %rzsin A. Thus, the shaded area is

2
the difference of these two: % (A — sinA). This difference of area also cleverly proves that A >

sin A for 0 < A <m. Note that once we know angle A, we can compute the length of the chord on
the circle using the law of cosines. In particular, this length is equal to r,/2(1 — cosA).

Circle-Line Intersection

Given an equation of a circle (X — cx)? + (y — ¢y)? = r? and a line in parametric form with the equation

X = X1 + Adx
Yy =Yy1+ Ady

we can simply plug in our arbitrary expression for x and y for any point on the line into the circle
equation:
(X1 +Adx— Cx)? + (Y1 + Ady — cy)* =12

Noting that the only thing unknown in this equation is A, we see that once we simplify, we can
rewrite this equation as a quadratic in A:

(0 + AP — 2 d(xs — &) + ty(ys — A + (x1 — G2+ (Y1 —)’ ~ 17 =0

If this equation has no solutions, there is no intersection. If it has one solution there is one solution,
which is a point of tangency, otherwise, there are two solutions. Once we get the appropriate values
of A, we can plug these back into the line equation to get the corresponding points of intersection
on the line with the circle. If our input line was a segment, we would have check to see if either
parameter for the intersection was in between 0 and 1.

Polygon Area
The area of a polygon can be summed up as the signed area of several triangles, each of which we

add using the magnitude of the cross product (discussed earlier). Let the vertices of a polygon in
counter-clockwise order be (Xo, Yo), (X1, Y1), ... (Xn-1, Yn-1). Imagine forming triangles with the
origin to each pair of vertices of the form (xi, Xi+1), as well as (Xn-1, Xo). The signed area of each of
these triangles precisely equals the area enclosed by the polygon. Adding these magnitudes of
cross products (and dividing by two since we're dealing with triangles), we get the desired formula

1 -
S 210 (XY i+ nywn — X(i+1y%ni), Tor the area of a polygon.
Pick's Theorem

If we are given a polygon with vertices on lattice points (integer coordinates), there's a nice
relationship between the number of lattice points on the boundary of the polyon, the interior of the

polygon and the area of the polygon. The formula is as follows: A =1 + g — 1, where A is the

area of the polygon, B is the number of boundary lattice points, and | is the number of interior
lattice points. Since we know how to find polygon area (above), this formula is useful for determine
the number of lattice points in the interior of a polygon.

Point in Polygon

Given a not necessarily convex polygon, one method to determine if a point is in a polygon is to
shoot a ray from the point in an arbitrary direction (better if it's not horizontal or vertical) and count
the number of times the ray crosses one of the line segments of the polygon. If this number is odd,
the point is in the polygon, if it's even it's not in the polygon. The key to this test is that you don't
want one of the points the ray intersects to be an actual end point of any edge, since accidentally
this will count twice. This is the reason for the arbitrary direction. The run time of this is O(n),
where n is the number of vertices/sides to the polygon.

Alternatively, what we can do if the vertices (in clockwise order) are vivs...vnh and the point in
question is p, we can calculate the angles vipvz, v2pvs, V3pvs, ..., vapvi, and add up all of these
angles. If this sum is equal to 2m, then the point is in the polygon. Otherwise it's outside the
polygon. (Note: when we check for equality with doubles, we'll check to see if our answer is within
a tolerance of what we expect. More details are given below in the Note about Precision.) If these
angles add up to something less, then the point is outside of the polygon. The angles should be
signed angles.

Notes about Solving Triangles

When solving a triangle, law of cosines yields an unambiguous answer always. If you can't use it,
keep in mind that law of sines has an ambiguous case. In particular, if you solve an equation and
get sin x = 0.5,where x is an angle in a triangle, x could be 30 degrees or 150 degree. Sometimes
you can rule out 150 if one of the other angles in the triangle is greater than 30. Other times, you
can't. Know a couple of the different formulas for the area of a triangle. (Some of these are Area =

%bh, Area = %bcsin(A), Area = \/S(s —a)(s — b)(s — c), where s = a+b+c.)

Note about Precision

Many geometry problems ask contestants to solve for quantities that are non-integral, or have
intermediate calculations that are necessarily important and non-integral. When dealing with
doubles, it's extremely important to take care with precision issues. Whenever checking for
equality between doubles, always use a tolerance. For example,

if (Math.abs(a-b) < le-9)
is preferable to
if (a == b)

Even in guestions that ask for output rounded to some number of decimal places, due to the nature
of numbers, it's often the case that a test case could have a result of 0.175 exactly. If the output is
to two decimal places, if you have 0.174999999998 stored, when printed to 2 decimal places, 0.17
will print instead of the correct 0.18. Thus, it's typical, before printing a rounded value to add a
small tolerance to it. The reason this doesn't usually change right answers to wrong answers is that
it's very difficult to make a test case where the correct answer is 0.17499999998, but easy to make
one where the right answer is 0.175.

Efficient Convex Hull Algorithm: Graham Scan

1. Find point with minimum y coordinate. If there’s a tie, break the tie with minimum x coordinate. (Takes
O(n) time for n points.) Call this the “starting point.”

2. Sort the rest of the points based on angle from the starting point.

3. Maintain a stack of points, which starts empty. This stack will store the convex hull. Add to it the starting
point and the next point in the array.

4. For each subsequent point (from index 2 on...) do the following: (This runs in O(n) time since no point
can be involved in more than two stack operations and there are only n points.)

a. Determine the angle formed with the last two points on the stack and the current point.
b. While this angle represents a right turn, pop the top point off the stack.
c. Push the current point onto the stack.

5. The items in the stack after we consider all points is the convex hull, in the order they are in the stack.

Consider this example:

L
L
D
G L]
E
- L
H F -
. C
|)
- B
A

The points are already sorted in alphabetical order based on the criteria given. Point A is the starting
point. Initially, the stack contains A, B and C and our hull looks like:

T
mall

Now, when we consider point D, we see that BCD is a right turn, not a left turn. So, we pop off C from the
stack and then look at the turn ABD, since AB are the top two items in the stack. This is a left turn, so our
hull changes to ABD. Fast forward and we get to when F gets added to the hull and our picture looks like:

Now, let’s consider G. The turn EFG is a right hand turn, so we pop F off the stack. The turn DEG is ALSO
a right hand turn, so we pop E off the stack. Finally, we find that the turn BDG is a left hand turn, so our
hull is as follows:

In the second to last iteration, H will get added onto the stack. In the last iteration, H gets popped off the
stack and then I gets pushed onto it. Then, the hull is completed by adding the edge 1A:

D

Reflection Trick - Pool Table

Some geometry problems deal with calculating reflections of an object bouncing around some sort
of area, and then trying to determine if a collision will occur, after some number of bounces. While
we can simulate such an action using some math, it turns out to be much easier to solve these sorts
of problems by "reflecting” the area over each boundary line. Consider the 2009 South East
Regional Problem Pool Table. In this problem you are given the location of a cue ball and a target
ball on a rectangular pool table, as well as the number of times the pool cue must bounce off the
walls before hitting the target ball. Given this information, you have to calculate the minimum
distance the cue ball has to travel to satisfy the requirements. Consider the following picture of a
cue bouncing twice and then hitting a target ball:

Another way of looking at this path is to reflect the table along each boundary wall that it bounces.
Consider this picture:

e

We start in frame one. Then the first bounce is just like what happens in frame two, if we reflect
the pool table over the bottom horizontal line. Then the second bounce is shown in frame 3, and
this is a picture of the reflection of frame 2 over the right vertical line. What we see here is
calculating where to shoot the ball to hit the target in two bounces is just line calculating the straight
line to the target ball in frame 3, where we place it in frame 3 by doing the appropriate reflections
show. So, to solve this problem, we do every possible set of k reflections (where we need k
bounces) and reflect the target ball in these locations. (These "mirror" pool tables form a diamond
similar to where you can get if you travel exactly k steps via Manhattan distance via unit
movements.) Then, just calculate the shortest distance to any of these reflected balls...EXCEPT
when on the path to a reflected ball, a previous reflected ball appears!!! (What this means is that
the cue ball would have hit the target earlier than k bounces.)

Binary, Ternary Searches - Geometry

Often times, even if a straight mathematical formula is difficult to derive for a geometric figure,
it's much easier to run a binary (or ternary) search to determine a length or area. Consider the
following problem called "Carpet"” from the 2014 South East Regional:

Problem #5: Carpet (Binary search with geometry)

The problem is you are given 3 lengths a, b, and c. They represent the distance from S in any angle
or direction. Find the length, s, such that you can form an equilateral triangle and from some point
in the triangle the distance from all 3 points of the triangle is a, b, and c. Here is a diagram:

s

Since we are given a, b and c, one thing we might imagine is seeing if we can check if a given
value L is too big or too small for our equilateral triangle.

We know that law of cosines state that c2 = a2 + b2 - 2abCos(C) where a, b, c are legs of the
triangle, unrelated to the above mentioned a, b, and c, and C is the angle formed at the point
opposite of the leg c.

So to determine if a current leg length is too big or too small we can determine this by summing
up the inner angle formed by the legs using the law of cosine. If the angle sum is less then 360
degrees then we need longer legs to increase the angle sum, if the angle sum is more then 360 we
need smaller legs.

There is a small problem we need to consider when using acos in java. It returns a range of 0 to
Pl. So we have to check if the length of the 3 legs qualify as being a triangle.

