
Memoization and Dynamic Programming: Lecture #1 

 

Motivation 

We have looked at several algorithms that involve recursion. In some situations, these 

algorithms solve fairly difficult problems efficiently, but in other cases they are 

inefficient because they recalculate certain function values many times. The example 

given in the text is the fibonacci example. Recursively we have: 

 
public static int fibrec(int n) { 

 if (n < 2) 

  return n; 

 else 

  return fibrec(n-1)+fibrec(n-2); 

} 

 

The problem here is that lots and lots of calls to Fib(1) and Fib(0) are made. It would be 

nice if we only made those method calls once, then simply used those values as 

necessary. 

In fact, if I asked you to compute the 10th Fibonacci number, you would never do it using 

the recursive steps above. Instead, you'd start making a chart: 

 

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34, F10 = 55. 

 

First you calculate F3 by adding F1 and F2, then F4, by adding F3 and F4, etc. 

 

The idea of memoization and dynamic programming is to avoid making redundant 

method calls. Instead, one should store the answers to all necessary method calls in 

memory and simply look these up as necessary.  

 

For memoization, we simply make tiny changes to the recursive code (making our own 

lookup table and manually avoiding recursion in the cases we've previously carried out a 

particular computation). 

 

For dynamic programming, we remove all recursion from our solution and instead, 

carefully order our calculations of solutions to subproblems so that any time we would 

like to look up an answer to a "recursive call", we can look it up because we've already 

calculated it.



First, let's look at a memoized version of Fibonacci. Before this code gets executed, we 

need to set up the following as a static variable in the class. (Alternatively, we can pass 

the memo table into the method as a second parameter.) 

 
public static int[] memo; 

 

In main, once we know the input size of the query, we would do: 

 
memo = new int[n+1]; 

Arrays.fill(memo, -1); 

 

Now, here is the method: 

 
public static int fibrec(int n) { 

    if (n < 2) return n; 

    if (memo[n] != -1) return memo[n]; 

    memo[n] = fibrec(n-1)+fibrec(n-2); 

    return memo[n]; 

} 

 

In a nutshell, memo is our memory. First we set it to all -1s. This means we don't know 

anything. In general, we'll set memo[n] to the nth Fibonacci number. So, all the changes 

we make to the code are as follows: 

 

1) Create a memo table that has appropriate storage for all possible recursive calls outside 

of the recursive method. Set this table to a sentinel value that can not be the answer to a 

real recursive call. Typically -1 works well. 

 

2) In our base case, immediately check to see if we've solved this before. If so, just return 

the answer stored in the memo table. 

 

3) Before we return the answer to a query, store it in the memo table. 

 

Basically, any time in our computation tree we hit a call to fib(k), where we've previously 

calculated it, we avoid that whole computation tree! 

 



Now, for dynamic programming, we realized that we want to calculate all Fibonacci 

numbers from the smallest to the largest. We keep the same storage as our memo table 

(but I'll rename it in this example) but fill it in incrementally and instead of making a 

recursive call ever, we'll just directly access the table any time we want to know some 

Fibonacci number. Here is the code: 

 
public static int fib(int n) { 

 

 int[] fibnumbers = new int[n+1]; 

 fibnumbers[0] = 0; 

 fibnumbers[1] = 1; 

 

 for (int i=2; i<n+1;i++) 

  fibnumbers[i] = fibnumbers[i-1]+fibnumbers[i-2]; 

 return fibnumbers[n]; 

} 

 

The only requirement this program has that the recursive one doesn't is the space 

requirement of an entire array of values. (But, if you think about it carefully, at a 

particular moment in time while the recursive program is running, it has at least n 

recursive calls in the middle of execution all at once. The amount of memory necessary to 

simultaneously keep track of each of these is in fact at least as much as the memory the 

array we are using above needs.) 

 

Usually however, a dynamic programming algorithm presents a time-space trade off. 

More space is used to store values, but less time is spent because these values can be 

looked up. 

 

Can we do even better (with respect to memory) with our Fibonacci method above? What 

numbers do we really have to keep track of all the time? 

 
public static int fib(int n) { 

 

 int fibfirst = 0; 

 int fibsecond = 1; 

 

 for (int i=2; i<n+1;i++) { 

  fibsecond = fibfirst+fibsecond; 

  fibfirst = fibsecond - fibfirst; 

  } 

 return fibsecond; 

} 

 

So here, we calculate the nth Fibonacci number in linear time (assuming that the 

additions are constant time, which is actually not a great assumption) and use very little 

extra storage. 

 



Problem #1: Binomial Coefficients 

There is a direct formula for calculating binomial coefficients, it's 
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However, it's instructive to calculate binomial coefficients using dynamic programming 

since the technique can be used to calculate answers to counting questions that don't have 

a simple closed-form formula. 

 

The recursive formula for binomial coefficients is 
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In code, this would look roughly like this: 

 
int combo(int n, int k) { 

  if (n == 0 || n == k) 

    return 1; 

  else 

    return combo(n-1,k-1)+combo(n-1,k); 

} 

 

However, this ends up repeating many instances of recursive calls, and ends up being 

very slow. We can implement a dynamic programming solution by creating a two 

dimensional array which stores all the values in Pascal's triangle. When we need to make 

a recursive call, instead, we can simply look up the answer in the array. To turn a 

recursive solution into a DP one, here's what has to be done: 

 

a) Characterize all possible input values to the function and create an array to store the 

answer to each possible problem instance that is necessary to solve the problem at hand. 

 

b) Seed the array with the initial values based on the base cases in the recursive solution. 

 

c) Fill in the array (in an order so that you are always looking up array slots that are 

already filled) using the recursive formula, but instead of making a recursive call, look up 

that value in the array where it should be stored. 

 

The code is on the next page:



public static int combo(int n, int k) { 
    int[][] tri = new int[n+1][n+1]; 

    for (int i=0; i<n+1; i++) { 

        tri[i][0] = 1; 

        tri[i][i] = 1; 

    } 

 

    for (int i=2; i<n+1; i++)  

        for (int j=1; j<i; j++) 

            tri[i][j] = tri[i-1][j-1] + tri[i-1][j]; 

 

    return pascaltri[n][k]; 

} 

The key idea here is that pascaltri[i][j] always stores 



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j

i
. Since we fill in the array in 

increasing order, by the time we look up values in the array, they are already there. 

Basically, what we are doing, is building up the answers to subproblems from small to 

large and then using the smaller answers as needed. 

 

Side Problem: Computing a "large" row of Pascal's Triangle mod a prime 

Recall that 
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can store a table of all the values of n! mod p up to our maximum value of n. The issue 

becomes division. We can't directly divide under mod, since mod requires integers and 

regular division is likely to give us non-integers. Instead, when dealing with mod, 

anything that looks like a division is replaced with multiplication by a modular inverse. 

We define a' to be the modular inverse of a mod p, iff aa' ≡ 1 mod p. Java has a method 

in its BigInteger class called modInverse() that will return the modular inverse of a mod 

p. If a and p were BigInteger objects, we could solve for the modular inverse as follows: 

 
BigInteger aInv = a.modInverse(p); 

 

If we had longs and wanted to utilize this method, we could write our own wrapper 

method: 

 
public static long modInv(long a, long p) { 

    BigInteger bigA = new BigInteger(""+a); 

    BigInteger bigP = new BigInteger(""+p); 

    return bigA.modInverse(bigP).longValue(); 

} 

Returning to our problem of calculating p
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quickly, what we could do is simply 

multiply n! mod p by the inverse of k! mod p times the inverse of (n-k)! mod p. All of 

these values would be stored in two look-up tables one for the regular values mod p and 

the other for the inverse values mod p. 



Problem #2: Longest Common Subsequence 

The problem is to find the longest common subsequence in two given strings. A 

subsequence of a string is simply some subset of the letters in the whole string in the 

order they appear in the string. In order to denote a subsequence, you could simply 

denote each array index of the string you wanted to include in the subsequence. For 

example, given the string "GOODMORNING", the subsequence that corresponds to 

array indexes 1, 3, 5,  and 6 is "ODOR." 

 

Here is the basic idea behind solving the problem: 

 

If the last characters of both strings s1 and s2 match, then the LCS will be one plus the 

LCS of both of the strings with their last characters removed. 

 

If the initial characters of both strings do NOT match, then the LCS will be one of two 

options: 

 

1) The LCS of x and y without its last character. 

2) The LCS of y and x without its last character. 

 

Thus, in this case we will simply take the maximum of these two values.  Also, we could 

just as easily have compared the first two characters of x and y and used a similar 

technique. 

 



Let's examine the code for both the recursive solution to LCS and the dynamic 

programming solution: 

 
// Arup Guha 

// 3/2/05 

 

// The method below solves the longest common subsequence  

// problem recursively. 

import java.io.*; 

 

public class LCS { 

 

  // Precondition: Both x and y are non-empty strings. 

  //               0 < len1 <= x.length() , 0 < len2 <= y.length 

  public static int lcsrec(String x, String y) { 

 

    // If one of the strings has one character, search for that  

    // character in the other string and return the appropriate  

    // answer. 

    if (x.length() == 1)  

        return find(x.charAt(0), y); 

    if (y.length() == 1) 

        return find(y.charAt(0), x); 

       

    // Solve the problem recursively. 

 

    // Corresponding last characters match. 

    if (x.charAt(len1-1) == y.charAt(len2-1)) 

        return 1+lcsrec(x.substring(0, x.length()-1), 

                                   y.substring(0,y.length()-1)); 

 

    // Corresponding characters do not match. 

    else  

        return max(lcsrec(x, y.substring(0, y.length()-1)),   

                             lcsrec(x.substring(0,x.length()-1), y)); 

 

  } 

 

Now, our goal will be to take this recursive solution and build a dynamic programming 

solution. The key here is to notice that the heart of each recursive call is the pair of 

indexes, telling us which prefix string we are considering. In some sense, we can build 

the answer to "longer" LCS questions based on the answers to smaller LCS questions. 

This can be seen trace through the recursion at the very last few steps.  

 

If we make the recursive call on the strings RACECAR and CREAM, once we have the 

answers to the recursive calls for inputs RACECAR and CREA and the inputs RACECA 

and CREAM, we can use those two answers and immediately take the maximum of the 

two to solve our problem! 

 



Thus, think of storing the answers to these recursive calls in a table, such as this: 

 

 R A C E C A R 

C        

R        

E        

A   XXX     

M        

 

 

In this chart for example, the slot with the XXX will store an integer that represents the 

longest common subsequence of CREA and RAC. (In this case 2.) 

 

Now, let's think about building this table. First we will initialize the first row and column: 

 

 R A C E C A R 

C 0 0 1 1 1 1 1 

R 1       

E 1       

A 1       

M 1       

 

 

Basically, we search for the first letter in the other string, when we get there, we put a 1, 

and all other values subsequent to that on the row or column are also one. This 

corresponds to the base case in the recursive code. 

 

Now, we simply fill out the chart according to the recursive rule: 

 

1) Check to see if the "last" characters match. If so, delete this and take the LCS of what's 

left and add 1 to it. 

 

2) If not, then we try to possibilities, and take the maximum of those two possibilities. 

(These possibilities are simply taking the LCS of the whole first word and the second 

work minus the last letter, and vice versa.) 

 

Here is the chart: 

 

 

 R A C E C A R 

C 0 0 1 1 1 1 1 

R 1 1 1 1 1 1 2 

E 1 1 1 2 2 2 2 

A 1 2 2 2 2 3 3 

M 1 2 2 2 2 3 3 

 



Now, let's use this to develop the dynamic programming code. 

 
  public static int lcsdyn(String x, String y) { 

 

     int i,j; 

     int lenx = x.length(); 

     int leny = y.length(); 

     int[][] table = new int[lenx+1][leny+1]; 

     

     // Fill in each LCS value in order from top row to bottom row, 

     // moving left to right. 

     for (i = 1; i<=lenx; i++) { 

         

    for (j = 1; j<=leny; j++) { 

 

           // Last chars match 

           if (x.charAt(i-1) == y.charAt(j-1)) 

                 table[i][j] = 1+table[i-1][j-1]; 

 

           // Take best of two possible smaller cases. 

           else 

            table[i][j] = Math.max(table[i][j-1], table[i-1][j]); 

         

           System.out.print(table[i][j]+" "); 

          } 

          System.out.println(); 

     } 

      

     // This is our answer. 

     return table[lenx][leny]; 

  } 



Problem #3: Longest Path in a DAG 

Since a DAG doesn’t have cycles, there are well-defined longest paths in DAGs. One 

way to solve this problem would be to use memoization. Recursively, a solution looks 

like this, assuming that a path always existed: 

 
int longpath(ArrayList[] graph, int source, int end) { 

 

    if (memo[source] != -1) return memo[source]; 

    if (source == end) return 0; 

 

    int best = Integer.MIN_VALUE; 

 

    for (int i=0; i<graph[source].size(); i++) { 

 

        int cur = graph[source].get(i).weight + 

         longpath(graph, graph[source].get(i).vertex, end); 

 

       best = Math.max(best, cur); 

    } 

 

    memo[source] = best; 

    return best; 

} 

 

Each array list must be an array list of objects that have the instance variables weight and 

vertex that store those corresponding items for that connection from the source variable 

and the memo array has to be declared as a static class variable. 

 

In essence, the code just says, “Try all paths that lead from source. The longest these 

paths could be is the sum of the edge from source to the next vertex, plus the longest path 

from that next vertex to our end vertex. Of all of these, take the longest!” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #4: Subset Sum 

Given a set of numbers, S, and a target value T, determine whether or not a subset of the 

values in S adds up exactly to T.  

 

The recursive solution looks something like this: 

 
// Returns true iff a subset of values from s[k..len-1] 

// sums to target. 

public static boolean SS(int[] s, int k, int target) { 

 

    if (target == 0) return true; 

    if (k == s.length) return false; 

   

    return SS(s, k+1, target) || SS(s, target-s[k]); 

} 

 

The basic idea is as follows: All subsets of S either contain S[k] or don't contain that idea. 

If a subset exists that adds up to the target, then we have two choices: 

 

a) Don't take the value 

b) Take the value 

 

If we don't take the value, then if we want an overall subset that adds up to T, we must 

find a subset of the rest of the elements that adds up to target. 

 

If we do take the value, then we want to add that element, to a subset of the rest of the set 

that adds up to target minus the value taken. 

 

These cases, a and b, correspond to the two recursive calls. Memoized, we could do: 

 
Boolean[] memo = new memo[target+1]; 

Arrays.fill(memo, null); 

 

public static boolean SS(int[] s, int k, int target) { 

    if (target == 0) return true; 

    if (k == s.length) return false; 

    if (memo[target] != null) return memo[target];   

    memo[target] =SS(s, k+1, target) || SS(s, target-s[k]); 

    return memo[target]; 

} 

 

Here, we use the Wrapper class Boolean and use null as our sentinel value, since neither 

true nor false can be our sentinel value. 

 

 

 

 



Now, when we convert this to dynamic programming, it'll look quite a bit different than 

our memoized version. We simulate the role of k with a for look through the current item 

we're considering and we simulate building off of old targets by looping through every 

possible previous target. 

 
boolean[] foundIt = new boolean[target+1]; 

foundIt[0] = true; 

for (int i=1; i<target+1; i++) foundIt[i] = false; 

 

for (int i=0; i<s.length; i++)  

   for (int j=target; j>=s[i]; j--) 

      if (foundIt[j – s[i]]) 

          foundIt[j] = true; 

 

 

Basically, in the outer loop we go through each element. Then, we look at all of the 

previous targets and see if we can build off of them. If we have a subset without item i 

that adds to j - s[i], then when we add item i to that subset, we'll get a new subset that 

adds to j, so we mark it as true. Note that it's important that we do the inner loop 

backwards, so that we don't change a value in the foundIt array based on element i, and 

then change a second element in the foundIt array based on the previously changed 

element. For example, if s[i] = 10, then if the loop worked forward, we'd mark 

foundIt[10] true, but later as the loop marched up, we'd mark foundIt[20] true because we 

have a subset that adds to 10 (just 10 itself) and then we're adding 10 to it again. But, 

we're not allowed to use the same item more than once! This is why the loop has to go 

backwards. 

 

If we want to allow multiple copies of each element, run the inner for loop forwards. Can 

you see why that works? 

 
for (int i=0; i<s.length; i++)  

   for (int j=s[i]; j<=target; j--) 

      if (foundIt[j – s[i]]) 

          foundIt[j] = true; 



Problem #5: Knapsack - Subset Sum Generalized 

Imagine in the subset sum problem that each item also had an associated value. So, our 

items are pairs - a value and a weight and our goal was to find some subset of items 

whose sum of weights equals some number while we try to maximize the total value of 

that subset. Thus, instead of just assigning a true or false value to each sub-case, we now 

want to assign a maximal integer value, for the best valued subset of each particular 

weight. Recursively, very little changes, except we try both branches and return the larger 

of the two values instead of their or. 

 

Iteratively, our code looks like this: 

 
public static int knapsack(items[] list, int target) { 

 

  int[] best = new int[target+1]; 

  for (int i=0; i<list.length; i++) 

    for (int j=target; j>=list[i].value; j--) 

      best[j] = Math.max(best[j], best[j-list[i].value]+ 

                                  list[i].weight); 

 

  return best[target]; 

} 

 

Note: if we wanted the best value of any knapsack with weight target or less, we could 

just sweep through the best array at the end and return the largest value in it. 

 

Once again, if we want to allow repeat values, we just run the inner loop forward so we 

can build off the same item. 

 

 


