
Competitive Training Camp
Lecture 1

Christian Yongwhan Lim
Tuesday, July 15, 2025



Christian Yongwhan Lim

https://www.yongwhan.io

https://www.yongwhan.io


● Head Coach, Columbia ICPC Team

● Chief Judge, ICPC NA Mid-Central

● Judge, ICPC NA Qualifiers and Regionals

● Chair, ICPC CLI Symposium

Christian Yongwhan Lim

https://www.yongwhan.io

https://www.yongwhan.io


● Head Coach, Columbia ICPC Team

● Chief Judge, ICPC NA Mid-Central

● Judge, ICPC NA Qualifiers and Regionals

● Chair, ICPC CLI Symposium

● Director, ICPC Internships

● Adjunct, Columbia CS

● VP of Engineering, Arklex AI

Christian Yongwhan Lim

https://www.yongwhan.io

https://www.yongwhan.io


● Quick Introduction!

Who are you?



● So, what is it?

Dynamic Programming



● So, what is it?

● Why is it infamous?

Dynamic Programming



Dynamic Programming (Warm-Up)

● Fibonacci sequence

int f(int n) {
if (n==0) return 0;
if (n==1) return 1;
return f(n-1) + f(n-2);

}



Dynamic Programming: Top-Down (Warm-Up)

● Fibonacci sequence

● TOO SLOW! How do you optimize this a bit?

int f(int n) {
if (n==0) return 0;
if (n==1) return 1;
return f(n-1) + f(n-2);

}



● One answer: Memoization!

Dynamic Programming: Top-Down (Warm-Up)

const int MAXN = 100;
bool found[MAXN];
int memo[MAXN];
int f(int n) {
if (found[n]) return memo[n];
if (n==0) return 0;
if (n==1) return 1;
found[n] = true;
return memo[n] = f(n-1) + f(n-2);

}



● You may use map or unordered_map (though slower).

Dynamic Programming: Top-Down (Warm-Up)

map<int, int> memo;
int f(int n) {
if (memo.count(n)) return memo[n];
if (n==0) return 0;
if (n==1) return 1;

return memo[n] = f(n-1) + f(n-2);
}



● Another answer (to speed up): bottom-up

Dynamic Programming: Bottom-Up (Warm-Up)

const int MAXN = 100;
int fib[MAXN];

int f(int n) {
fib[0] = 0;
fib[1] = 1;
for (int i = 2; i <= n; i++)
fib[i] = fib[i-1] + fib[i-2];

return fib[n];
}



● To save a memory, since you are using only previous two values, you can 

do:

Dynamic Programming: Bottom-Up (Warm-Up)

const int MAX = 3;
int fib[MAX];
int f(int n) {
fib[0] = 0;
fib[1] = 1;
for (int i = 2; i <= n; i++)
fib[i%MAX] = fib[(i-1)%MAX] + fib[(i-2)%MAX];

return fib[n%MAX];
}



● Counting all possible paths from top left to bottom right corner of a 

matrix (Combinations)

● 0-1 Knapsack

● Subset Sum

● Coin Change (CC)

Classic Dynamic Programming (DP) Problems



[DP] Path Counting



[DP] 0-1 Knapsack



[DP] Subset Sum



● Sample Code

[DP] Live Coding: CSES 1636: Coin Combinations II

https://cses.fi/paste/ccd923e69d6245427b59c2/
https://cses.fi/paste/ccd923e69d6245427b59c2/
https://cses.fi/problemset/task/1636

	Slide 1: Competitive Training Camp Lecture 1
	Slide 2: Christian Yongwhan Lim
	Slide 3: Christian Yongwhan Lim
	Slide 4: Christian Yongwhan Lim
	Slide 5: Who are you?
	Slide 6: Dynamic Programming
	Slide 7: Dynamic Programming
	Slide 8: Dynamic Programming (Warm-Up)
	Slide 9: Dynamic Programming: Top-Down (Warm-Up)
	Slide 10: Dynamic Programming: Top-Down (Warm-Up)
	Slide 11: Dynamic Programming: Top-Down (Warm-Up)
	Slide 12: Dynamic Programming: Bottom-Up (Warm-Up)
	Slide 13: Dynamic Programming: Bottom-Up (Warm-Up)
	Slide 14: Classic Dynamic Programming (DP) Problems
	Slide 15: [DP] Path Counting
	Slide 16: [DP] 0-1 Knapsack
	Slide 17: [DP] Subset Sum
	Slide 18: [DP] Live Coding: CSES 1636: Coin Combinations II

