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Who are you?

e Quick Introduction!



Dynamic Programming

e So, what s it?



Dynamic Programming

e So, what s it?

e Why is it infamous?



Dynamic Programming (Warm-Up)

e Fibonacci sequence

int f(int n) {
if (n==0) return 9;
if (n==1) return 1;
return f(n-1) + f(n-2);
}



Dynamic Programming: Top-Down (Warm-Up)

e Fibonacci sequence

int f(int n) {
if (n==0) return 9;
if (n==1) return 1;
return f(n-1) + f(n-2);
}

e TOO SLOW! How do you optimize this a bit?



Dynamic Programming: Top-Down (Warm-Up)

e One answer: Memoization!

const int MAXN = 100;
bool found[MAXN]:
int memo[MAXN]
int f(int n) {
if (found[n]) return memo[n];
if (n==0) return 9;
if (n==1) return 1;
found[n] = true;
return memo[n] = f(n-1) + f(n-2);



Dynamic Programming: Top-Down (Warm-Up)
e You may use map or unordered_map (though slower).

map<int, int> memo;

int f(int n) {
if (memo.count(n)) return memo[n];
if (n==0) return 0;
if (n==1) return 1;

return memo[n] = f(n-1) + f(n-2);

}



Dynamic Programming: Bottom-Up (Warm-Up)

e Another answer (to speed up): bottom-up

const int MAXN = 100;
int fib[MAXN]

int f(int n) {
fib[@] = 9;
fib[1] = 1;

for (int i = 2; i <= n; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib[n];

}



Dynamic Programming: Bottom-Up (Warm-Up)

e To save a memory, since you are using only previous two values, you can
do:

const int MAX = 3;
int fib[MAX]:
int f(int n) {
fib[ 0] 0:
fib[1] = 1;
for (int i = 2; i <= n; i++)
fib[i%MAX] = fib[(i-1)%MAX] + fib[ (i-2)%MAX];
return fib[n%MAX]:



Classic Dynamic Programming (DP) Problems

e Counting all possible paths from top left to bottom right corner of a
matrix (Combinations)

e 0-1 Knapsack

e Subset Sum

e Coin Change (CC)



[DP] Path Counting



[DP] 0-1 Knapsack



[DP] Subset Sum



[DP] Live Coding: CSES 1636: Coin Combinations I

e Sample Code



https://cses.fi/paste/ccd923e69d6245427b59c2/
https://cses.fi/paste/ccd923e69d6245427b59c2/
https://cses.fi/problemset/task/1636
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