Competitive Training Camp
Lecture 1

=== Christian Yongwhan Lim
Tuesday, July 15, 2025

Christian Yongwhan Lim Mir

COLUM BIA

. -
UNIVERSITY pC
foundation

Education Part-time Jobs

MIT

Stanfo d

UmversnI;l I I I EECS
Full-time Job Workshops || Coach/Judge

Stanford’
ENGINEERING | Stanford Computer Forum

Google Research
€ TWO SIGMA

gl [UNIVERSITY
- OF]
w8Y [CALIFORNIA
RV}

oooooooooooooo
aaaaaaaaaaaaaaaaaa
ooooooooo

https://www.yongwhan.io

https://www.yongwhan.io

°)) N - cb /‘
Christian Yongwhan Lim o [T e
Head Coach, Columbia ICPC Team
Chief Judge, ICPC NA Mid-Central -
Judge, ICPC NA Qualifiers and Regionals A
Chair, ICPC CLI Symposium

https://www.yongwhan.io

https://www.yongwhan.io

NI

Christian Yongwhan Lim i o2, 5

Head Coach, Columbia ICPC Team
Chief Judge, ICPC NA Mid-Central oo
Judge, ICPC NA Qualifiers and Regionals Y
Chair, ICPC CLI Symposium

e Director, ICPC Internships
e Adjunct, Columbia CS
e VP of Engineering, Arklex Al

https://www.yongwhan.io

https://www.yongwhan.io

Who are you?

e Quick Introduction!

Dynamic Programming

e So, what s it?

Dynamic Programming

e So, what s it?

e Why is it infamous?

Dynamic Programming (Warm-Up)

e Fibonacci sequence

int f(int n) {
if (n==0) return 9;
if (n==1) return 1;
return f(n-1) + f(n-2);
}

Dynamic Programming: Top-Down (Warm-Up)

e Fibonacci sequence

int f(int n) {
if (n==0) return 9;
if (n==1) return 1;
return f(n-1) + f(n-2);
}

e TOO SLOW! How do you optimize this a bit?

Dynamic Programming: Top-Down (Warm-Up)

e One answer: Memoization!

const int MAXN = 100;
bool found[MAXN]:
int memo[MAXN]
int f(int n) {
if (found[n]) return memo[n];
if (n==0) return 9;
if (n==1) return 1;
found[n] = true;
return memo[n] = f(n-1) + f(n-2);

Dynamic Programming: Top-Down (Warm-Up)
e You may use map or unordered_map (though slower).

map<int, int> memo;

int f(int n) {
if (memo.count(n)) return memo[n];
if (n==0) return 0;
if (n==1) return 1;

return memo[n] = f(n-1) + f(n-2);

}

Dynamic Programming: Bottom-Up (Warm-Up)

e Another answer (to speed up): bottom-up

const int MAXN = 100;
int fib[MAXN]

int f(int n) {
fib[@] = 9;
fib[1] = 1;

for (int i = 2; i <= n; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib[n];

}

Dynamic Programming: Bottom-Up (Warm-Up)

e To save a memory, since you are using only previous two values, you can
do:

const int MAX = 3;
int fib[MAX]:
int f(int n) {
fib[0] 0:
fib[1] = 1;
for (int i = 2; i <= n; i++)
fib[i%MAX] = fib[(i-1)%MAX] + fib[(i-2)%MAX];
return fib[n%MAX]:

Classic Dynamic Programming (DP) Problems

e Counting all possible paths from top left to bottom right corner of a
matrix (Combinations)

e 0-1 Knapsack

e Subset Sum

e Coin Change (CC)

[DP] Path Counting

[DP] 0-1 Knapsack

[DP] Subset Sum

[DP] Live Coding: CSES 1636: Coin Combinations I

e Sample Code

https://cses.fi/paste/ccd923e69d6245427b59c2/
https://cses.fi/paste/ccd923e69d6245427b59c2/
https://cses.fi/problemset/task/1636

	Slide 1: Competitive Training Camp Lecture 1
	Slide 2: Christian Yongwhan Lim
	Slide 3: Christian Yongwhan Lim
	Slide 4: Christian Yongwhan Lim
	Slide 5: Who are you?
	Slide 6: Dynamic Programming
	Slide 7: Dynamic Programming
	Slide 8: Dynamic Programming (Warm-Up)
	Slide 9: Dynamic Programming: Top-Down (Warm-Up)
	Slide 10: Dynamic Programming: Top-Down (Warm-Up)
	Slide 11: Dynamic Programming: Top-Down (Warm-Up)
	Slide 12: Dynamic Programming: Bottom-Up (Warm-Up)
	Slide 13: Dynamic Programming: Bottom-Up (Warm-Up)
	Slide 14: Classic Dynamic Programming (DP) Problems
	Slide 15: [DP] Path Counting
	Slide 16: [DP] 0-1 Knapsack
	Slide 17: [DP] Subset Sum
	Slide 18: [DP] Live Coding: CSES 1636: Coin Combinations II

