
ODOMETER PROBLEM

00000
00001
00002
..
00009
00010
….
09999
10000
…
99999

f(2 3 5 _ _, 3) → will print out all odometer
setings where the first 3 digits are set to 2 3 5.

23500
23501
…
23599

2350_ → do this first f(2 3 5 0 _, 4)
2351_ → do this next f(2 3 5 1 _, 4)
2352_ → do this third f(2 3 5 2 _, 4)
…
2359_ → do this last f(2 3 5 9 _, 4)

printodom(odom, k):

 if k == len(odom):
 print(odom)
 return

 for i in range(10):

 odom[k] = i

 printodom(odom, k+1)

Imagine odometer with only 0s and 1s:

Odometer Set

012

000 { }
001 {2}
010 {1}
011 {1,2}
100 {0}
101 {0,2}
110 {0,1}
111 {0,1,2}

Binary Representation of a number

000 0 {}
001 1 {0}
010 2 {1}
011 3 {1,0}
100 4 {2}
101 5 {2,0}

110 6 {2,1}
111 7 {2,1,0}

1011001 = 1x26 + 0x25 + 1x24 + 1x23 + 0x22 +
0x21 + 1x20

Int x; // x = 5, how do I access the bits of x???

x & y → bitwise and (set intersection)
x = 1010 (10)
y = 1100 (12)
 1000 (8)

X | y → bitwise or (set union)

x = 1010 (10)
y = 1100 (12)
 1110 (14)

The value of n 1s: 1111 is simply 2n – 1.

X^y → bitwise xor (light switches, grading TF
exams)

X = 1010 (10)
Y = 1100 (12)
 0110 (6), 1 in xor means those bits are
 Different in x and y,

If x^y = z, then x^z = y and y^z = x.

How do I look at a single bit and determine if
it’s on or not?

a << b, this is left shift a by b bits.

1010 << 3 → 1010000
This is basically multiplying a by 2b so long as
there is no overflow.

1 << n → this equals 2n

a >> b → this right shifts a by b bits, chopping
off the last b bits

101011011101 >> 5 → 1010110

To look at bit i, do this:

if (x & (1<<i)) != 0:
 // Bit i is on.
Else:
 .. Bit i is off.

X = 1011100001, I = 4
(1<<4)= 00000 10000

A common problem is given n items, say
0, 1, 2, …, n-1

List all orderings of those items.
0,1,2
0,2,1
1,0,2

1,2,0
2,0,1
2,1,0

Only difference between this and the
odometer is no repeats…
We need to edit the odometer but build in a
system to prevent repeats…

SKETCH OF ODOM CODE:

 If k == length:
 // PROCESS
 Return

 For i in range(choices):
 IF i has already been placed, skip it!
 Odom[k] = i
 Odometer(odom, k+1)

0 _ _ → need some way to skip filling in 0 here
0 1 _ → here skip BOTH 0 and 1.

Idea → add an used array, where used[i] =
true if i has already placed in the array, and
false if it hasn’t.

DERANGEMENTS

0 1 2
1 2 0
2 0 1

For all I,

Perm[i] != i…no person gets their own hat.

