

Problem F: Sorting K Window Sums

Filename: ksums

Time limit: 6 seconds

Given a sequence of n integers, we define a k -window to be k contiguous terms in the sequence. There are $n - k + 1$ k -windows in a sequence of n integers so long as $n \geq k$. We can label each of these windows with their starting index, with the leftmost window having the label 1. Naturally, we can define the sum of a specific k -window to be the sum of the terms within the window. We can sort each of the $n - k + 1$ k -windows in a sequence of n integers based upon the sum of each window, with windows with larger sums coming first. If two k -windows have the same sum, we break ties by having the one with the lower label come first.

Problem

Given a sequence of n integers and a value of k , determine the sorted order of each of the k -windows of the sequence.

Input

The first line will consist of a single positive integer, c , representing the number of test cases to process. The next line will contain two space separated integers, n and k , representing the length of the input sequence and the size of the windows, respectively. The next line will contain n space separated integers x_i ($1 \leq x_i \leq 10^9$), representing the i^{th} value in the sequence.

Output

For each case, output $n - k + 1$ space separated integers representing the sorted order (as defined above) of all of the k -windows, where each integer is the label of the window represented.

Input Bounds and Corresponding Credit

30 Points	70 Points
<ul style="list-style-type: none">• $1 \leq c \leq 10$• $1 \leq n \leq 1000$• $1 \leq k \leq n$• $1 \leq x_i \leq 10^9$	<ul style="list-style-type: none">• $1 \leq c \leq 15$• $1 \leq n \leq 10^5$• $1 \leq k \leq n$• $1 \leq x_i \leq 10^9$

Samples

Input	Output
2 5 3 2 3 4 3 2 10 4 14 12 18 19 13 12 14 14 10 20	2 1 3 1 2 3 4 7 5 6

Sample Explanation: In the first input sample, window number 1 contains 2,3 and 4 with a sum of 9, window number 2 contains 3,4 and 3 with a sum of 10, and window number 3 contains 4,3 and 2 with a sum of 9. Since window number 2 has the maximal sum, this window comes first and 2 is the first output. Then, since windows 1 and 3 have the same sum (9), we break the tie by window number, placing window 1 before window 3.