

Problem E: Garden Hopping

Filename: garden

Time limit: 1 second

Grace has a magical garden with n stepping stones arranged in a line, numbered from 1 to n . Each stone has a certain energy cost to step on, given by an array $\text{cost}[1..n]$. Grace wants to cross the garden by stepping on stones starting from stone 1 and ending on stone n .

However, the garden is enchanted:

- Grace can jump from stone i to stone j only if $j > i$ and $(j - i)$ divides i . That means she can jump from stone i to any stone j such that $(j - i)$ is a divisor of i .

For example, if Grace is on stone 6, she can jump to stones:

- $6 + 1 = 7$ (since 1 divides 6),
- $6 + 2 = 8$ (since 2 divides 6),
- $6 + 3 = 9$ (since 3 divides 6),
- and so on, as long as $j \leq N$.

Grace wants to minimize the total energy cost of all stones she steps on, including the first stone (stone 1) and the last stone (stone n).

The Problem

Given the array cost of length N , find the minimum total cost for Grace to reach stone n starting from stone 1 following the jumping rule.

The Input

The first line will consist of a single positive integer, c , representing the number of test cases to process. The first line of each test case contains a single integer, n , representing the number of stones in Grace's garden. The second line of each test case contains n space separated integers $\text{cost}[1]$, $\text{cost}[2]$, ..., $\text{cost}[n]$, representing the energy cost to step on each stone, respectively.

The Output

For each test case, print a single integer — the minimum energy cost to travel from stone 1 to stone n .

Input Bounds and Corresponding Credit

100 Points
<ul style="list-style-type: none">• $1 \leq c \leq 10$• $2 \leq n \leq 10^5$• $1 \leq \text{cost}[i] \leq 10^4$

Samples

Input	Output
2	16
10	24
5 2 3 1 10 4 2 7 6 1	
8	
4 8 2 5 6 3 1 7	