COMPUTER SCIENCE A

-i SECTION IT
' Time—1 hour and 45 minutes
Number of questions—4°

Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN JAVA.

Notes:

» Assume that the classes listed in the Quick Reference found in the Appendix have been imported where
appropriate. :

* Unless otherwise noted in the question, assume that parameters in method calls are not null and that methods
are called only when their preconditions are satisfied,

* In writing solutions for each question, you may use any of the accessible methods that are listed in classes
defined in that question. Writing significant amounts of code that can be replaced by a call to one of these
methods may not receive full credit. '

1. A statistician is studying sequences of numbers obtained by repeatedly tossing a six-sided number cube, On each
side of the number cube is a single number in the range of 1 to 6, inclusive, and no number is repeated on the
cube. The statistician is. particularly interested in runs of numbers, A run occurs when two or more consecutive
tosses of the cube produce the same value. For example, in the following sequence of cube tosses, there are runs
starting at positions 1, 6, 12, and 14. :

Index 0 I 2 3 4 5 °6 7 8 9 10 11 12 13 14 15 16 17
Result155431222261335555

The number cube is represented by the following class.

public class NumberCube
{ .
/** @return an integer value between 1 and 6, inclusive
* / . . .

4 hi ko LG5 ’ .
{ /* implementation not shown *,/ }

// There may be instance variables, constructors, and methods that are not shown.
o '

You will implement a method that collects the results of several tosses of a number cube and another method
that calculates the longest run found in a sequence of tosses. :

GO ON TO THE NEXT PAGE.

i () Write the method getCubeTosses that takes a number cube and a number of tosses as parameters. The
i, method should return an array of the values produced by tossing the number cube the given number of times.
i

Complete method getCubeTosses below.

f
i . . .
; - /** Returns an array of the values obtained by tossing a number cube numTosses times.
J * @param cube a NumberCube

; * @param numTosses the number of tosses to be recorded

; * Precondition: numTosses > 0
¥ * @return anarray of numTosses values
. * /

X - public Statlc int[] getCubeTosses(NumberCube cube, int numTosses)

(b) Write the method getLongestRun that takes as its parameter an array of integer values representmg a
series of number cube tosses. The method returns the starting index in the array of a run of maximurn size. A
run is defined as the repeated occurrence of the same value in two or more consecutive positions in the

array.
f
For example, the following array contains two runs of length 4, one starting at index 6 and another startmg at

index 14. The method may return either of those starting indexes.

If there are no runs of any value, the method returns - 1.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Rcsult15543122226133'5555

Complete method getLongestRun below.

/** Returns the starting index of a longest run of two or more consecutive repeated values
* inthe array values. _
* @param values an array of integer values representing a series of number cube tosses

* Precondition: values.length > 0 .

* @return the starting index of a run of maximum size; ~
* -1 if there is no run

*/ ' :

public static int getLongestRun{int(] values)

GO ON TO THE NEXT PAGE.

et e e i it et e ot e

3. An electric car that runs on batteries must be periodically recharged for a certain number of hours. The battery
technology in the car requires that the charge time not be interrupted.

The cost for charging is based on the hour(s) during which the charging occurs. A rate table lists the 24 one-hour
periods, numbered from 0 to 23, and the corresponding hourly cost for each period. The same rate table is used
for each day. Each hourly cost is a positive integer. A sample rate table is given below.

Hour Cost Hour Cost Hour Cost
0 50 | 8 150 16 | 200
1 60 ' 9 .| 150 17 200
2 160 10 150 18 180
3 60 11 200 | 19 180
4 80 12 40 20 140
5 100 13 240 21 100
6 100 14 | 220 . 22 80
7 120 15 220 23 60

The class BatteryCharger below uses a rate table to determine the most economic time to charge
the battery. Youn will write two of the methods for the BatteryCharger class.

public class BatteryCharger
{ .
/** rateTable has 24 entries representing the charging costs for hours 0 through 23, */

s

/** Determines the total cost to charge the battery starting at the beginning of startHour.
@param startHour the hour at which the charge period begins -

* Precondition: 0 < startHour < 23 '

* @param chargeTime the number of hours the battery needs to be charged

"k Precondition: chargeTime > 0

*

*

@return the total cost to charge the battéry

{ /* tobeimplemented in part (a) */ 1

/** Determines start time to charge the battery at the lowest cost for the given charge time.
* @param chargeTime the number of hours the battery needs to be charged

* : Precondition: chargeTime > 0
* @return an optimal start time, with 0 < returned value < 23
*/

"i Shn {E T
{ to be implemented in part (b) */)

// There may be instance variables, constructors, and methods that are not shown.

GO ON TO THE NEXT PAGE.

(a) Write the BatteryCharger method getChargingCost that returns the total cost to charge a
battery given the hour at wh1ch the charging process will start and the number of hours the battery needs to
be charged.

For example, using the rate table given at the beginning of the question, the following table shows the

b

resulting costs of several possible charges.

Start Hour of Hours of Charge Last Hour of . Total Cost
Charge Time Charge

12 1 12 40

0 2 1 110

22 7 4 (the next day) 550

22 30 3 (two days later) 3,710

Note that a charge period consists of consecutive hours that may extend over more than one day.

Complete method getChargingCost below.

/** Determines the total cost to charge the battery starting at the beginning of startHour.
* @param startHour the hour at which the charge period begins

* ' Precondition: 0 < startHour < 23

* . @param chargeTime the number of hours thevbattery needs to be charged
* ' Precondition: chargeTime > 0

* @return the total cost to charge the battery

* / . .

private int getChargingCost(int startHour, int chargeTime)

GO ON TO THE NEXT PAGE.

(b) Write the BatteryCharger method getChargeStartTime that returns the start time that will
allow the battery to be charged at minimal cost. If there is more than one possible start time that produces
the minimal cost, any of those start times can be returned.

For example, using the rate table given at the beginning of the question, the following table shows the
resulting minimal costs and optimal starting hour of several possible charges.

Hours of Charge Minimum Cost Start Hour of Last Hour of Charge
Time Charge
1 40 12 12
_ 0 1
2 110 or
23 0 (the next day)
7 550 22 4 (the next day)
30 3,710 22 3 (two days later)

/
Assume that getChargingCost works as specified, regardless of what you wrote in part (a).

Complete method getChargeStartTime below.

/** Determines start time to charge the battery at the lowest cost for the given charge time.
* @param chargeTime the number of hours the battery needs to be charged

* Precondition: chargeTime > 0 :
* @return an optimal start time, with 0 < returned value < 23
* / .

public int getChargeStartTime (int chargeTime)

GO ON TO THE NEXT PAGE.

4. A game uses square tiles that have numbers on their sides. Each tile is labeled with a number on each of its
four sides and may be rotated clockwise, as illustrated below.

INITIAL AFTER 1 AFTER 2 AFTER 3 AFTER 4
ROTATION ROTATIONS ROTATIONS ROTATIONS
4 4 7 3 4
4 3 7 4 3 4 4 7 4 3
7 3 4 4 7

The tiles are represented by the NumberTile class, as given below.

public class NumberTile
{
/** Rotates the tile 90 degrees clockwise
*/ .

{ /* implementation not shown */ 1}

/** @return value at left edge of tile -

* "imefnn onnotshown */ }

/** @return value at right edge of tile

SR

on hgt éﬁown */)

{ /% 1mp'le_mentat1

// There may be instance variables, constructors, and methods that are not shown.
}

Tiles are placed on a game board so that the adjoining sides of adjacent tiles have the same number. The
following figure illustrates an arrangement of tiles and shows a new tile that is to be placed on the game board.

GAMEBOARD _ NEW TILE
4 6 1 3 5
4 3| |3 Al la 20 |2 212 o9
7 3 3 2
Position =~ 0 1 2 3 4

GO ON TO THE NEXT PAGE.

In its original orientation, the new tile can be inserted between the tiles at positions 2 and 3 or between the tiles
at positions 3 and 4. If the new tile is rotated once, it can be inserted before the tile at position O (the first tile) or
after the tile at position 4 (the last tile). Assume that the new tile, in its original orientation, is inserted between
the tiles at positions 2 and 3. As a result of the insertion, the tiles at positions 3 and 4 are moved one location to
the right, and the new tile is inserted at position 3, as shown below.

GAME BOARD AFTER INSERTING TILE

4 6 1 . 3 5
4 3] 13 4| |4 2 2 2| |2 9
7 3 e 5 2
Position 0 1 2 3 4 5

-

~ A partial definition of the TileGame class is given below.

public class TileCGame

{

/** represents the

anie board,;

Sk Ltz H .
= new ArrayList<NumberTile>(); }

/** Determines where to insert tile, in its current orientation, into game board
*

{

/ to be 1mpiemted in part (a)

@param tile the tile to be placed on the game board
@return the position of tile where tile is to be inserted:
0 if the board is empty; . ‘ .
-1 if tile does not fitin front, at end, or between any existing tiles;
otherwise, 0 < position returned < board.size()

/)

/** Places tile on the game board if it fits (checking all possible tile orientations if necessary).
*

*
*
*
*
*
*
*

If there are no tiles on the game board, the tile is placed at position 0.

The tile should be placed at most 1 time.

Precondition: board isnot null
‘@param tile the tile to be placed on the game board

@return true if tile is placed successfully; false otherwise

Postcondition: the orientations of the other tiles on the board are not changed
Postcondition: the order of the other tiles on the board relative to each other is not changed

/* tobe implemented in part (b) */ 1}

// There may be instance variables, constructors, and methods that are not shown.

}

GO ON TO THE NEXT PAGE.

1» (a) Write the TileGame method getIndexForFit that determines where a given tile, in its current
: orientation, fits on the game board. A tile can be inserted at either end of a game board or between two
existing tiles if the side(s) of the new tile match the adjacent side(s) of the tile(s) currently on the game
board. If there are no tiles on the game board, the position for the insert is 0. The method returns the position
that the new tile will occupy on the game board after it has been inserted. If there are multiple possible
- positions for the tile, the method will return any one of them. If the given tile does not fit anywhere on the
game board, the method returns -1.

For example, the following diagram shows a game board and two potential tiles to be placed. The call
getIndexForFit{tilel)} can return cither 3 or4 because tilel can be inserted between the
tiles at positions 2 and 3, or between the tiles at positions 3 and 4. The call getIndexForFit (tile2)
returns —1 because tile2, inits current orientation, does not fit anywhere on the game board.

GAME BOARD tilel tile2
4 6 T REE 5 o
4 3|3 a4 2|02 202 9
. 3 : 2
Position 0 1 2 3 ' 4

Complete method getIndexForFit below.

/** Determines where to insert tile, in its current orientation, into game board
i * @param tile the tile to be placed on the game board
| * @return the position of tile where tile is to be inserted:

S F 0 if the board is empty;
* -1 if tile does not fit in front, at end, or between any ex1st1ng tiles;
* , otherwise, 0 < position returned < board.size()
*/

| private int getIndexForFit (NumberTile tile)

(b) Wiite the TileGame method insertTile that attempts to insert the given tile on the game board.
< The method returns true if the tile is inserted successfully and false only if the tile cannot be placed
on the board in any orientation.

Assume that getIndexForFit works as specified, regardless of what you wrote in part (a).

Complete method insertTile below.

/** Places tile on the game board if it fits (checking all p0351b1e tile orientations if nccessary)
i * If there are no tiles on the game board, the tile is placed at position 0.

The tile should be placed at most 1 time.

Precondition: board isnot null

@param tile the tile to be placed onthe game board

@return true if tile isplaced successfully; false otherwise

Postcondition: the orientations of the other tiles on the board are not changed

* Postcondition: the order of the other tiles on the board relative to each other is not changed

* / o

public boolean insertTile{NumberTile tile)

E A

GO ON TO THE NEXT PAGE.

-10-

