
Some Sample AP Computer Science A Questions - Solutions

Note: These aren't from actual AP tests. I've created these questions based on looking at actual

AP tests. Also, in cases where it's not necessary to have choices, I've removed the choices and

changed the format of the question to short answer.

Short Answer Questions

1) What does the following segment of Java code print out?

double x = 4.5;

int y = (int)x;

System.out.println(x+" "+y);

Solution

This prints out:

4.5 4

When you cast a double to an int, it truncates the result.

2) What does the following segment of Java code print out?

int x = 7, y = 3;

int z = x/y + x%y;

if (z == x)

 y++;

if (z == y)

 x++;

System.out.println(x+" "+y+" "+z);

Solution

This prints out:

8 3 3

Since 7/3 = 2 and 7%3 = 1, initially we set z to 3. At this point z and x aren't equal, so the first if

gets skipped. Then we evaluate the second if where z and y are equal and x gets incremented to 8

(from 7). So, the final values of x, y and z are 8, 3, and 3 respectively.

3) What does the following segment of Java code print out?

for (int i=1; i<30; i = i + 3)

{

 if (i%2 == 0)

 System.out.print((i/2)+" ");

}

System.out.println();

Solution

As we go through the loop, i takes on the values 1, 4, 7, 10, 13, 16, 19, 22, 25 and 28. Of these,

the even values (those that pass the if statement test) are 4, 10, 16, 22 and 28. If we divide each

of these by 2, we get the output:

2 5 8 11 14

4) What does the following segment of Java code do in general?

Scanner stdin = new Scanner(System.in);

System.out.println("Enter n.");

int n = stdin.nextInt();

int total = 0;

while (n > 0) {

 total = total + n%10;

 n = n/10;

}

System.out.println(total);

Solution

For any value of n, n%10 isolates the units digit and n/10 chops off the units digit. Thus, the

while loop systematically chops off each digit, adding it to total, until no more digits remain.

Thus, this segment of code prints out the sum of the digits of the original value of n entered by

the user.

Multiple Choice Questions

1) Which of the following Boolean expressions are equivalent? (Assume that x and y are integer

variables that have been initialized with the intended values.)

i) ((x > 0) && (y > 0)) || ((x > 0) && (y < 0))

ii) x != y

iii) (x > 0) && (y != 0)

iv) (x > 0) && (x + y != x)

A) i and ii

B) i and iii

C) i, iii, iv

D) ii, iii, iv

E) All 4 are different, logically.

Solution

When we look at the first expression, we see that x > 0 is a requirement, since this must be true

to satisfy either of the larger clauses. Notice that once we force x > 0, as long as y isn't 0, the first

expression is true, since the or allows either option.

Once we have that down, we can look at the other choices. The second choice isn't equivalent

because could just use x = -3, y = 4 to show that (i) and (ii) are different. In this case, the (i) is

false while (ii) is true.

Notice that (iii) is exactly what we determined (i) to be.

Finally, notice that x + y != x is equivalent to y != 0, which we can show by subtracting x from

both sides of the check. This, the correct answer is C.

2) The Boolean expression !(A || B) is equivalent to which of the following?

A) !A || !B

B) !A || B

C) !A && !B

D) !A && B

E) None of the Above

Solution

If we plug in the four options for the ordered pair (A, B) of (True, True), (True, False), (False,

True) and (False, False), we see that the given expression is ONLY true for (False, False). Of the

ones given, only choice C is ONLY true for (False, False), since it's an AND. Thus, the correct

answer is choice C. (Note: This is an application of DeMorgan's Law.)

3) What does the following code segment print out?

for (int i=5; i>0; i--)

{

 for (int j=0; j<i; j++)

 System.out.print((2*i-j)+" ");

 System.out.println();

}

A) 5 4 3 2 1 B) 10 9 8 7 6 C) 10 8 6 4 2 D) 0 2 4 6 8

 4 3 2 1 8 7 6 5 8 6 4 2 0 2 4 6

 3 2 1 6 5 4 6 4 2 0 2 4

 2 1 4 3 4 2 0 2

 1 2 2 0

E) None of the Above

Solution

As the outer loop runs, i counts down 5, 4, 3, 2, and 1. The value of 2*i in these situations is 10,

8, 6, 4 and 2, respectively. The inner loop counts up from 0 to i-1, so when i is 5, j assumes the

values of 0, 1, 2, 3 and 4. Thus, what gets printed on the first line is 10 9 8 7 6. Tracing through

the rest of the lines, we see that choice B is indeed correct.

Free Response Questions - Solutions in Separate Attached Files (numtriangle.java,

revdigits.java, drop.java)

1) Write two different segments of code that, assuming that the integer variable n has been

assigned to a positive value, print out the following:

1 2 3 4 … n

1 2 ..n-1

…

1 2

1

2) Complete the program below so that it prints out the digits of the integer n, in reverse order.

For example, if the user enters 73546, then your program should print out 64537. (Hint: one of

the short answer questions may shed light on how to solve this problem!)

import java.util.*;

public class revdigits {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in);

 System.out.println("Enter n.");

 int n = stdin.nextInt();

 // Fill in your code here!

 }

}

3) The formula for how far an object falls from a height of h, in t sections is 16t2 feet. Thus, the

object's height off the ground after t seconds is equal to max(0, h - 16t2). Complete the

program below so that it prints out a chart of how high off the ground an object is at each second

(starting at t = 0) until the object hits the ground.

import java.util.*;

public class drop {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in);

 System.out.println("Enter the initial height.");

 int height = stdin.nextInt();

 // Fill in your code here!

 }

}

