
Using Classes 

 
Most books teach how to use classes with the String class. 

However, the String class is designed in a deceiving manner, so 

that the user is hidden from many details that are essential to 

understand with respect to using classes. Thus, this lecture will 

use a separate example (the GiftCard class, which is NOT a 

pre-written class in Java) to illustrate how to use classes. 

 

Before we get into the specifics of a class, let's quickly lay out 

the philosophical reason for object oriented programming and 

classes. 

 

As programs get large, it's impossible for any single person to 

understand all of the complexity behind them. In order for 

programmers to be able to do very complicated things, such as 

write video games, it's impossible for them to deal with 

everything on a very low level. Instead, it's advantageous for 

them to be able to use "objects" that are flexible but EASY to 

use. 

 

A natural object that comes to mind is a cell phone. It's a 

complicated device, but once you have one, you can VERY 

EASILY use it to do lots of different things without 

understanding how IT works, OR how the buttons on it really 

work. You just have to understand how to "create" one (go to 

the store and buy one =)) and then you have to understand how 

to implement tasks that are specific to the cell phone (such as 

looking up a number in your directory).  



Note that you can't do anything you want with your cell phone. 

For example, you can't search all of your text messages for a 

specific string. (Well, at least I can't on my phone =)) If you 

knew how to mess with the inside of the phone, you could 

probably make the changes to do that, but since you don't have 

that access, you can ONLY carry out the different "methods" 

that the cell phone maker has provided for you. 

 

Furthermore, note that each of these methods can be carried 

out on ANY cell phone object and that it's different to call a 

number from your cell phone than my cell phone. 

 

The reason it's advantageous to define a class like the 

CellPhone class is that once it is written, others can create 

objects of the class and USE those objects (with the methods 

specific to the CellPhone class) without spending a whole lot of 

time to understand HOW a CellPhone is organized and stored. 

 

In C, whenever you call a function, you didn't need to know 

HOW the function worked either, BUT you did need to know 

how all relevant data was stored. 

 

In an object oriented language, when you use a class, there's 

NO NEED for you to know HOW the data in an object of that 

class is stored. Instead, you can just create an object and USE 

it without knowing how the data for the object is stored. This is 

known as DATA ABSTRACTION, and is the primary feature 

of object oriented languages that is lacking from imperative 

languages (like C). 



CellPhone example with Pseudocode 

 
Here is an example of some pseudocode that will look similar 

to Java code that utilizes CellPhone objects: 

 

CellPhone one = new CellPhone(Sprint, "John", "Doe"); 

CellPhone two = new CellPhone(Verizon, "Jenny", "Doe"); 

 

one.addDirectory(Jenny, 8675309); 

one.call(Jenny); 

two.ring(); 

two.answer(); 

 

In this example, we first "create" two cell phone objects, which 

are referred to by one and two, respectively. (These are 

references to the actual objects in Java.) 

 

Then, Jenny's number is added to the phone object one. 

Following this, the phone object one (John) calls Jenny. 

 

Jenny's phone (two) rings. Then, her phone is answered. 

 

Hopefully it should be clear that each of these actions: adding 

to a directory, calling, ringing and answering, can ONLY be 

done on CellPhone objects. 

 

addDirector(Jenny, 8675309) would make no sense because we 

would have no idea WHICH phone directory to add that entry 

to. 

 

Similarly, we must call from a CellPhone object, a CellPhone 

object (and not a coffee table) rings, and CellPhone objects can 

be answered, which once again, coffee tables can NOT be. 

 



Using a Class in Java: Calling the Constructor 
 

A typical class defines the characteristics of an object. In order 

to make use of that class, first one has to create an object of 

that class. 

 

The only way to create an object in Java is to call a constructor 

for a class. 

 

In the GiftCard class, the following constructors exist: 

 

// Creates a GiftCard object owned by first last with no  

// initial balance. 

public GiftCard(String first, String last); 

 

// Creates a GiftCard object owned by first last with an 

// initial balance of amt dollars. 

public GiftCard(String first, String last, double amt); 

 

Notice that the name of a constructor is ALWAYS the same 

name as the class. Furthermore, constructors can take in zero 

or more parameters like other methods. These parameters are 

used to create the object. 

 

In order to call a constructor, the key word new must be used. 

Here is a typical call to the GiftCard constructor: 

 

Giftcard macys = new GiftCard("Arup", "Guha", 200); 

 

This call creates a GiftCard object whose owner is Arup Guha 

that has an initial balance of 200 dollars. 

 



Using a Class in Java: Calling Instance Methods 
 

Once an object is created, then that object can be manipulated 

or acted upon by the instance methods in the class. In 

particular, instance methods define the possible behaviors of 

objects of a class. Here is a listing of the instance methods in 

the GiftCard class: 

 

// Spends amt dollars from the current object if the current  

// object has adequate funds and returns true. If not, false is 

// returned and no money is spent. 

public boolean spend(double amt); 

 

// Transfers ownership of the current object to first last. 

public void transfer(String first, String last); 

 

// Returns a String representation of the current object. 

public String toString(); 

 

// Returns a negative integer if the current object has a smaller 

// balance than g, 0 if they have the same balance, and a  

// positive integer if it has a greater balance than g. 

public int compareTo(GiftCard g); 

 

// Adds amt dollars to the current object. 

public void addAmount(double amt); 



Here is how we can add $10.99 to the GiftCard object we just 

created: 

 

macys.addAmount(10.99); 

 

addAmount is void, so we want to call it on a line by itself. 

 

Since addAmount is an instance method, we NEED to precede 

a call to it with the name of an object followed by a dot. This is 

how ALL instance methods are called. 

 

Finally, we must follow the rules and pass in a double to this 

method. The effect of the method is to add 10.99 to the balance 

of the GiftCard object referenced by macys. 

 

It's also important to note that we can declare multiple objects 

of the same class. Let's define another GiftCard object: 

 

GiftCard sears = new GiftCard("John", "Doe", 50); 

 

Now, our picture roughly looks like this: 

 

macys ---------------- [ Arup Guha 210.99 ] 

sears -----------------  [ John Doe 50.00 ] 

 

If we execute the line, 

 

sears.spend(19.99) 

 

then our picture would be 

 

macys ---------------- [ Arup Guha 210.99 ] 

sears -----------------  [ John Doe 30.01 ] 

 

We must specify WHICH GiftCard object to run spend on.  



Using the methods that we have, we could determine which 

GiftCard object had more money in it in the following fashion: 

 

if (macys.compareTo(sears) > 0) 

  System.out.println("Macys has more money!"); 

else if (macys.compareTo(sears) == 0) 

  System.out.println("Both have the same money!"); 

else 

  System.out.println("Sears has more money!"); 

 

Given the current state of the objects in our trace, the 

following would be printed: 

 

Macys has more money! 

 

Now, consider executing the line: 

 

macys.transfer("Sarah","Pierce"); 

 

Now, our picture looks like: 

 

macys ---------------- [ Sarah Pierce 210.99 ] 

sears -----------------  [ John Doe 30.01 ] 

 

In this manner, we can continue to utilize any number of 

GiftCard objects we want. We are limited by the different 

public methods that are given to us in the class, as was 

mentioned in the cell phone analogy before. 

 



Use of references in Java 

 
It was alluded that the names "macys" and "sears" are really 

references to the two GiftCard objects in the previous 

examples. The pictures on the previous page indicate that as 

well. Now, let's examine the user of references. 

 

Consider the following line of code: 

 

GiftCard mycopy = macys; 

 

Because mycopy (just like macys and sears) are references the 

picture ACTUALLY looks like this now: 

 

macys ---------------- [ Sarah Pierce 210.99 ] ------mycopy 

sears -----------------  [ John Doe 30.01 ] 

 

Thus, there are STILL only two objects, but both macys and 

mycopy refer to the SAME object.  

 

In general, the line of code 

 

a = b; 

 

where a and b are non-primitives makes a reference the SAME 

object that b is referencing. Although this seems a bit weird, 

it's the same thing that happens with pointers in C, and it 

comes in amazingly handy and makes many things work very 

smoothly. 

 



Now, consider running the line: 

 

mycopy.spend(199.50); 

 

Here is the new picture of what has happened: 

 

macys ---------------- [ Sarah Pierce 11.49 ] ------mycopy 

sears -----------------  [ John Doe 30.01 ] 

 

 

Thus, even though macys isn't explicitly shown on the last line 

of code, the object to which macys is referring HAS 

CHANGED!!! 

 

Now consider the following line: 

 

macys = new GiftCard("Donald", "Trump", 100000000); 

 

Here is the new picture: 

 

macys ---------------- [ Donald Trump 100000000.00 ] 

      [ Sarah Pierce 11.49 ] ------mycopy 

sears -----------------  [ John Doe 30.01 ] 

 

All that line of code does is create a new object (the constructor 

does this), then macys is set to refer to the newly created 

object.  

 

In essence, ANY time a non-primitive is on the left-hand side of 

an assignment statement, that means that it will reference 

WHATEVER the reference on the right-hand side of the 

assignment statement is referencing. 

 

The key is that references are separate from objects. 

Constructor calls create objects. References point to them. 



Second Example of Using a Class: Time 

 
The following is the listing of the public methods in a class 

called Time. This class describes an object that stores a unit of 

time. We will use it in an example where the user enters how 

long his/her tasks for the day took and see if that exceeds a 

particular threshold. The listing below only contains the 

method calls needed to complete the given task. 

 
// Creates a time object that is h hours  

// and m minutes long. 

public Time(int h, int m); 

 

// Returns a negative integer if the current 

// object is shorter than time2, 0 if it is 

// equal to time2 and a positive integer if 

// it is longer than time 2. 

public int compareTo(Time time2); 

 

// Returns a time object that is the as long 

// as the sum of the current object and  

// time2. 

public Time addtime(Time time2); 



Time Class Example Program 

 
public class Activities { 

 

  public static void main(String[] args) { 

 

    Scanner stdin = new Scanner(System.in); 

    System.out.println("Enter # hours."); 

    int hours_worked = stdin.nextInt(); 

 

    Time min = new Time(hours_worked,0); 

 

    Time worked = new Time(0,0); 

 

    int ans = 1; 

    while (ans == 1) { 

 

      System.out.println("Enter task time"); 

      int h = stdin.nextInt(); 

      int m = stdin.nextInt(); 

      Time temp = new Time(h,m); 

 

      worked = worked.addtime(temp); 

 

      System.out.println("Again?(1/0)"); 

      ans = stdin.nextInt(); 

    } 

 

    if (worked.compareTo(min) >= 0) 

      System.out.println("Did enough!"); 

    else 

      System.out.println("Work more!"); 

  } 

} 
 



 


