
Binary Search 
 

One algorithm where recursion may seem more natural than 

iteration is with a binary search. Consider the following 

problem: 

 

You are given a sorted array A, and a value to find in that 

array, val. You must determine whether or not val is in the 

array A. 

 

One way we could look at this problem is by adding a couple 

pieces of information: 

 

Rather than just being given A and val, consider also being 

given a low and high index value to the array as the bounds for 

the search. Thus, rather than searching for val in the whole 

array, your task is slightly more specific: you must decide 

whether or not val is in A, in between index low and index 

high. 

 

Let's think about how we can break this problem down: 

 

We are search for val in the array A in between indexes low 

and high. 

 

1) We want to compare val to the "middle" value in the array. 

 

Why would we want to do this? 

What is the middle value? 

 

Generally speaking, we want to minimize the worst case 

behavior of the algorithm. If we compare val to the 10th value 

out of 19 total values, then no matter what our answer is (val is 

smaller than this value, equal to it, or greater than it), 

 



We make sure that after we make the comparison, the 

maximum number of values we have to search is 9. We really 

can't do any better than that. Basically, after one comparison, 

either I nail the value I am searching for, OR I have 

guaranteed to reduce my search space to 1/2 of what it was. 

 

To determine the middle value with which to do the 

comparison, simply average the low and high indexes which 

are the bounds of your search. 

 

Since we are writing this function recursively, we need to 

specify the terminating condition(s): 

 

1) When the number is found! 

2) When the search range is nothing (when low > high). 

 

Now, we are ready to write the function: 

 
public static boolean binSearch(int[] values, int low, int high, int 

searchval) { 

 

    int mid; 

    if (low <= high) { 

 

        mid = (low+high)/2; 

        if (searchval < values[mid]) 

            return binSearch(values, low, mid-1, searchval); 

        else if (searchval > values[mid]) 

            return binSearch(values, mid+1, high, searchval); 

        else 

            return true; 

     } 

 

     return false; 

} 

 

 

 

 

 

 



Sum of the Digits of an Integer n 

 
Consider summing up the digits of an integer, say, 1386. 

Recursively, we could either break down the problem as  1 + 

the sum of the digits of 386 OR the sum of the digits of 138 + 6. 

Thus, the key is figuring out which is easier to isolate - the 

units digit or the most significant digit. It turns out that the 

latter is easier, since n%10 will always produce the units digit 

of n. Furthermore n/10 (using integer division) always 

produces the number n with the last digit cut off, since that last 

digit would represent a decimal in the division by 10. 

 

Once we make these observations, we can write a recursive 

function to sum up the digits in a non-negative integer follows: 

 

// Precondition : n >= 0 

// Postcondition : The sum of the digits of n is returned. 
public static int digitSum(int n) { 

     if (n > 0) 

          return n%10 + digitSum(n/10); 

     return 0; 

} 

 

Let's trace through an example: 

 

digitSum(8345) returns 5 + digitSum(834) 

digitSum(834) returns 4 + digitSum(83) 

digitSum(83) returns 3 + digitSum(8) 

digitSum(8) returns 8 + digitSum(0) 

digitSum(0) returns 0, so now 

digitSum(8) returns 8, and 

digitSum(83) returns 11, and 

digitSum(834) returns 15, and finally 

digitSum(8345) returns 20. 

 



Introduction to Towers of Hanoi 

 
The story goes as follows: Some guy has this daunting task of 

moving this set of golden disks from one pole to another pole. 

There are three poles total and he can only move a single disk 

at a time. Furthermore, he can not place a larger disk on top of 

a smaller disk. Our guy, (some monk or something), has 64 

disks to transfer. After playing this game for a while, you 

realize that he's got quite a task. In fact, he will have to make 

264 - 1 moves total, at least. (I have no idea what this number is, 

but it's pretty big...) 

 

Although this won't directly help you code, it is instructive to 

determine the smallest number of moves possible to move these 

disks. First we notice the following: 

 

It takes one move to move a tower of one disk. 

 

For larger towers, one way we can solve the problem is as 

follows: 

 

1) Move the subtower of n-1 disks from pole 1 to pole 3. 

2) Move the bottom disk to pole 2. 

3) Move the subtower of n-1 disks from pole 3 to pole 2. 

  

We can now use this method of solution to write a method that 

will print out all the moves necessary to transfer the contents 

of one pole to another. Here is the prototype for our method: 

 

public static void towers(int n, int start, int end); 

 

n is the number of disks being moved, start is the number of 

the pole the disks start on, and end is the number of the pole 

that the disks will get moved to. The poles are numbered 1 to 3. 



Here is the method: 

 
public static void towers(int n, int start, int end) { 

 

     if (n > 0) { 

          int mid = 6 - start - end; 

          towers(n-1, start, mid); 

          System.out.print("Move disk "+n+" from tower "); 

          System.out.println(start+" to tower "+end+"."); 

          towers(n-1,mid,end); 

     } 

} 

 

 

 
 

 

 


