
Recursion 

 
Definition: Any time the body of a function contains a call to 

the function itself. 

 

So, just as you are allowed to call function B from within 

function A, you are ALSO allowed to call function A from 

within function A! 

 

Potential Problem: But if my function calls itself, how can we 

ever finish executing the original function? 

 

What this means is that some calls to the function MUST NOT 

result in a recursive call. I think this can best be seen from an 

example. 

 

// Pre-conditions: e is greater than or equal to 0. 

// Post-conditions: returns be. 
public static int power(int base, int exponent) { 

 

     if ( exponent == 0 ) 

          return 1; 

     else 

          return (base*power(base, exponent-1)); 

} 

 

 



To convince you that this works, let’s look at an example: 

 

Say we were trying to evaluate the expression 

 

Power(5, 2)  

 

Power(5,2) returns 5*Power(5,2-1) = 5*Power(5,1) 

 

To evaluate this expression we must evaluate: 

 

Power(5,1) returns 5*Power(5, 0) 

 

Finally, we have: 

 

Power(5,0) returns 1. 

 

Thus, Power(5,1) returns 5*1, which is 5. 

 

Finally, Power(5,2) returns 5*Power(5,2-1) = 5*5 = 25, 

and we are done. 



General Structure of Recursive Functions 

 
What we can determine from the example above is that in 

general, when we have a problem, we want to break it down 

into chunks, where one of the chunks is a smaller version of the 

same problem. 

 

(In the case of Power, we utilized the fact that xy = x * xy-1, and 

realized that xy-1 is in essence an easier version of the original 

problem.) 

 

Eventually, this means that we break down our original 

problem enough that our sub-problem is quite easy to solve. At 

this point, rather than making another recursive call, directly 

return the answer, or complete the task at hand. 

 

So, ideally, a general structure of a recursive function has a 

couple options:  

 

1) Break down the problem further, into a smaller subproblem 

2) OR, the problem is small enough on its own, solve it. 



 

When we have two options, we often use an if statement. This is 

typically what is done with recursion. Here are the two general 

constructs of recursive functions: 

 

Construct 1 

if (terminating condition) { 

 DO FINAL ACTION 

} 

else { 

 Take one step closer to terminating condition 

 Call function RECURSIVELY on smaller subproblem 

} 

 

 

Construct 2 

if (!(terminating condition) ) { 

 Take a step closer to terminating condition 

 Call function RECURSIVELY on smaller subproblem 

} 

 

 

Typically, functions that return values take on the first 

construct, while void recursive functions use the second 

construct. Note that these are not the ONLY layouts of 

recursive programs, just common ones. 



Example using construct 1 
 

Let’s write a function that takes in one positive integer 

parameter n, and returns the sum 1+2+...+n. (You probably 

did this is C numerous times, yet surprisingly it never gets old!) 

 

Step 1: We need to solve this problem is such a way that part of 

the solution is a sub-problem of the exact same nature. 

 

Let f(n) denote the value 1+2+3+...+n 

Using our usual iterative logic, we have 

 

f(n) = 1 + (2 + 3 + ... + n) 

 

But, 2+3+... + n IS NOT a sub-problem of the form 1+2+...+n. 

 

But, let’s try this: 

 

f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))  

 

So, here we have gotten the expression 1 + 2 + ... + (n-1) which 

IS a sub-problem we were looking for. Hence, we have 

 

 f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1)) = n + f(n-1) 



 

If we look at the construct 1, the first thing we need to 

determine is a terminating condition. We know that f(0) = 0, so 

our terminating condition can be n=0. 

 

Furthermore, our recursive call needs to be returning an 

expression for f(n) in terms of f(k), for some k<n. In this case, 

we just found that f(n) = n + f(n-1). So, now we can write our 

function: 

 

// Pre-condition: n is a positive integer. 

// Post-condition: Function returns the sum 1+2+...+n 
public static int triangleNumber(int n) { 

 

     if ( n == 0 )  

          return 0; 

     else 

          return (n + triangleNumber(n-1)); 

} 

 

 

Let’s compare this to the ITERATIVE version you would have 

written before: 

 

// Pre-condition: n is a positive integer. 

// Post-condition: Function returns the sum 1+2+...+n 
public static int triangleNumberIter(int n) { 

 int index, sum = 0; 

 for (index=1; index <=n; index++) 

  sum = sum + index; 

   

return sum; 

} 

 

 

 

 



Two Other Classic Examples that Use Construct #1 

 
For positive integers n, n! (read, “n factorial”), is defined as 

follows: 

 

n! = 1x2x3x4x…xn 

 

In fact, this is identical to the triangle number definition except 

that we multiply the set of integers instead of adding them. 

Likewise, the recursive code looks very similar: 

 
public static int fact(int n) { 

 

     if (n == 0)  

          return 1; 

     else 

          return n * fact(n-1); 

} 

 

 

Fibonacci numbers are defined recursively, thus, coding them 

is quite easy, based on the original mathematical definition: 

 

F1 = 1, F2 = 1, Fn = Fn-1 + Fn-2, for all integers n > 2. 

 
public static int fib(int n) { 

    if (n < 3) 

        return 1; 

    else 

        return fib(n-1) + fib(n-2); 

} 

 

This turns out to be inefficient, for reasons we will mention 

later. 



Example using construct 2 

 
We must write a function for an example of construct 2. A 

couple lectures ago, when I introduced loops, we wrote an 

algorithm that printed out a tip chart. We could have just as 

easily made that a function that takes in the lowest dollar value 

and highest dollar value on the chart. The method header of 

the function would look like: 

 

// The function prints out a chart with the appropriate tips 

// for meals ranging from first_val to last_val number of  

// dollars, for every whole dollar amount. Both parameters 

// must be positive integers. 

void Tip_Chart (int first_val, int last_val) 

 

Now, let’s consider writing this function recursively. 

 

First, we need to determine a terminating condition. That 

seems to be relatively simple: if the lowest dollar amount is 

greater than the highest dollar amount, then the chart is empty 

and we are done. 

 

Next, we need to figure out how to break down our task into 

two steps: one that does part of the job, and secondly a 

recursive step. 

 

1) It is clear that the first value we have to print of the chart is 

associated with the lowest dollar value, since that must 

appear on the chart first. Printing out this line of the tip 

chart can be the part of the job we accomplish. 

2) Now, are we left with a sub-problem of the same nature? 

Yes! We simply now need to print a tip chart from the 

lowest dollar value+1 to the highest dollar value. 



 

So, now, we can use these steps to come up with the function: 

 

#define TIP_RATE   0.15 

 

// Pre-condition: Both parameters are integers with the first 

//     one being less than or equal to the second one. 

// Post-condition: A tip chart will be printed out, with a row for 

//      each dollar amount ranging in between the 

//      value of the two parameters. 
public static void tipChart (int start, int end) { 

 

  if (start <= end)  { 

    System.out.print("On a meal of $"+start); 

    System.out.println(", tip $"+start*TIP_RATE+"."); 

    tipChart(start + 1, end); 

  } 

} 



Using a Stack to Trace Recursive Code 

 
A stack is a construct that can be used to store and retrieve 

items. It works just like a stack of plates in the cafeteria: The 

last plate placed on the top is the first one that must be 

removed. Essentially, it’s a Last In, First Out(or LIFO) system. 

 

Stacks can help us trace calls to recursive functions. Consider 

computing Power(8,3) using the recursive definition of Power 

given in lecture. We can put a line of code from our main 

algorithm as the first item on the stack: 

 

Main algorithm: Unfinished: “total = Power(8,3) 

 

Now, we need to compute that value, so the function call 

Power(8,3) is placed above this statement in the stack. 

 

Power(1st) b=8,e=3, Unfinished: “Power returns 8*Power(8,2)” 

Main algorithm: Unfinished: “total = Power(8,3)” 

 

Now we repeat the process... 

 

Power(2nd) b=8,e=2, Unfinished:“Power returns 8*Power(8,1)” 

Power(1st) b=8,e=3, Unfinished: “Power returns 8*Power(8,2)” 

Main algorithm: Unfinished: “total = Power(8,3)” 

 

Again... 

 

Power(3rd) b=8,e=1, Unfinished: “Power returns 8*Power(8,0)” 

Power(2nd) b=8,e=2, Unfinished:“Power returns 8*Power(8,1)” 

Power(1st) b=8,e=3, Unfinished: “Power returns 8*Power(8,2)” 

Main algorithm: Unfinished: “total = Power(8,3)” 

 



Finally, 

 

Power(4th) b=8,e=0, returns 1 

Power(3rd) b=8,e=1, Unfinished: “Power returns 8*Power(8,0)” 

Power(2nd) b=8,e=2, Unfinished:“Power returns 8*Power(8,1)” 

Power(1st) b=8,e=3, Unfinished: “Power returns 8*Power(8,2)” 

Main algorithm: Unfinished: “total = Power(8,3)” 

 

Now, we are ready to “collapse” the stack: 

 

Power(3rd) b=8,e=1, “Power returns 8*1” 

Power(2nd) b=8,e=2, Unfinished:“Power returns 8*Power(8,1)” 

Power(1st) b=8,e=3, Unfinished: “Power returns 8*Power(8,2)” 

Main algorithm: Unfinished: “total = Power(8,3)” 

 

Power(2nd) b=8,e=2, “Power returns 8*8” 

Power(1st) b=8,e=3, Unfinished: “Power returns 8*Power(8,2)” 

Main algorithm: Unfinished: “total = Power(8,3)” 

 

Power(1st) b=8,e=3, “Power returns 8*64” 

Main algorithm: Unfinished: “total = Power(8,3)” 

 

Main algorithm: “total = 512” 

 



Practice Problem 

 
Write a recursive function that takes in two non-negative 

integer parameters, and returns the product of these 

parameters. 

 

// Precondition: Both parameters are non-negative integers. 

// Postcondition: The product of the two parameters is retrned. 
public static int mult(int x, int y) { 

 

     if (( x == 0 ) || (y == 0 ))  

          return 0; 

     else 

          return x + mult(x, y-1); 

} 

 

How can we adapt this solution to work for negative numbers? 

 

// Precondition: None 

//Postcondition:The product of the two parameters is returned. 
public static int mult(int x, int y) { 

 

     if ( y < 0 ) 

           return -mult(x,-y); 

     else if ( x < 0 ) 

           return -mult(-x, y); 

     else if ((x == 0 ) || (y == 0 ))  

          return 0; 

     else 

          return (x + mult(x, y-1)); 

} 

 

 

 

 

 

 


