
Junior Knights OOP Assignment: Recursion

Write the following recursive functions and make calls to each from your main function:

1) Geometric Series

Write a recursive function that determines the sum of a geometric sequence given the value of

the first term, the number of terms and the common ratio. The function prototype is below:

public static double geoSum(double first, int numterms, double

ratio);

2) Arithmetic Series

Write a recursive function that determines the sum of an arithmetic sequence given the value of

the first term, the number of terms and the common difference. The function prototype is below:

public static double arithSum(double first, int numterms, double

diff);

3) Lucas Numbers

The Lucas, Ln, numbers are defined as follows:

L1 = 1, L2 = 3, Ln = Ln-1 + Ln-2, for all n > 2.

Write a recursive method that takes in an integer n and returns the nth Lucas number. The method

prototype is given below:

public static int lucas(int n);

4) Tri-Fib Numbers

The Tri-Fib, Tn, numbers are defined as follows:

T1 = 1, T2 = 2, T3 = 3, Tn = Tn-1 + Tn-2 + Tn-3, for all n > 3.

Write a recursive method that takes in an integer n and returns the nth Tri-Fib number. The

method prototype is given below:

public static int triFib(int n);

5) Binomial Coefficients

Binomial coefficients, denoted C(n,k), can be computed as follows:

C(n,0) = C(n,n) = 1, for all non-negative integers n.

C(n,k) = C(n-1, k-1) + C(n-1, k), for all integers n > 0 with 0 < k < n.

Write a recursive function that returns the value of C(n, k).

// Pre-condition: n  0, and 0  k  n

// Post-condition: Returns C(n,k).

int bin_coeff(int n, int k);

6) Sum of values in an Array

Write a recursive function that computes the sum of all the values in an array, from index low to

index high, inclusive.

// Pre-condition: 0 < low, high < array.length

// Post-condition: Returns the sum of array[low..high].

public static int sumArray(int[] array, int low, int high);

7) 3n+1

We can create a sequence of integers, given a starting term, n, as follows. If n is even, divide it

by 2 to get the next number in the sequence. Otherwise (if n is odd), let 3n+1 be the next term in

the sequence. Continue generating terms until 1 is reached. This is the end of the sequence. For

example, starting with 6, we generate the sequence 6, 3, 10, 5, 16, 8, 4, 2, 1, a sequence of 9

terms. Write a recursive function with an input value n, so that it returns the length of the

sequence starting with n, generated in this fashion.

// Pre-condition: n is positive, and produces a sequence

// with only values less than 1 billion

// Post-condition: Returns the length of the sequence start with

// n

public static int threeNPlusOne(int n);

