
Merge Sort

After looking at straightforward sorting algorithms such as

Insertion Sort and Selection sort, one might ask if there is a more

clever, quicker way to sort numbers that does not require

looking at most possible pair of numbers. (Perhaps we can

gather extra information from a comparison that renders other

comparison’s that could have been done useless.) In this class we

will utilize the concept of recursion to come up with a couple

more efficient algorithms.

One of the more clever sorting algorithms is merge sort. Merge

sort utilizes recursion and a clever idea in sorting two separately

sorted arrays.

The Merge

The merging problem is one that is more simple than sorting an

unsorted array, and one that will be a tool we can use in Merge

Sort.

The problem is that you are given two arrays, each of which is

already sorted. Now, your job is to efficiently combine the two

arrays into one larger one which contains all of the values of the

two smaller arrays in sorted order.

The essential idea is this:

1) Keep track of the smallest value in each array that hasn’t

been placed in order in the larger array yet.

2) Compare these two smallest values from each array. One of

these must be the smallest of all the values in both arrays that

are left. Placed the smallest of the two values in the next

location in the larger array.

3) Adjust the smallest value for the appropriate array.

4) Continue this process until all values have been placed in the

large array.

This should look amazingly similar to the Sorted List Matching

Algorithm we looked at last time. The same principle is in use

here: because we are dealing with two sorted lists, we can

streamline our job. This saves us comparisons.

Illustration of Merge Algorithm

Here is an illustration of an algorithm to do a merge. (It’s easier

to understand with pictures instead of pseudocode.)

2 7 16 44 55 89

1 6 9 13 15 49

Here is what happens after the first step:

1

2 7 16 44 55 89

min A

 6 9 13 15 49

 min B

Here is what happens after the second step:

1 2

 7 16 44 55 89

 min A

 6 9 13 15 49

 min B

Here is what happens after the third step:

1 2 6

 7 16 44 55 89

 min A

 9 13 15 49

 min B

As you can see, when we are done, our large array will be in

sorted order, like so:

1 2 6 7 9 13 15 16 44 49 55 89

Now, the big question is how can we use this to sort an entire

array, since this would only sort a specific type of array, where

the first half and second half of the array were already in sorted

order.

Here is the main idea for merge sort:

1) Sort the first half of the array, using merge sort.

2) Sort the second half of the array, using merge sort.

3) Now, we do have a situation to use the Merge algorithm!

Simply merge the first half of the array with the second half.

So, this points to a recursive solution.

You might ask, “But how do we know that Merge Sort is going

to work on both halves of the array?” The answer is that in each

call to merge sort, you must run the Merge method on some two

parts of the array. All of the actual sorting gets done in the

Merge method.

Let’s demonstrate how this algorithm is going to work before

looking at the code to implement it.

// This is a method used to perform a merge sort on the instance variable array.

// array[start1..start2-1] and array[start2..end2] must both be sorted sub-arrays.

// When completed array[start1…end2] will be a sorted sub-array.

 private void merge(int start1, int start2, int end2) {

 int end1 = start2-1;

 int[] tmp = new int[end2-start1+1];

 int i = start1, j = start2;

 int curI = 0;

 while (i < start2 || j <= end2) {

 if (i == start2) {

 tmp[curI] = array[j];

 j++;

 }

 else if (j == end2+1) {

 tmp[curI] = array[i];

 i++;

 }

 else if (array[i] < array[j]) {

 tmp[curI] = array[i];

 i++;

 }

 else {

 tmp[curI] = array[j];

 j++;

 }

 curI++;

 }

 for (i=0; i<tmp.length; i++)

 array[i+start1] = tmp[i];

 }

 public void mergeSort() {

 mergeSortRec(0, array.length-1);

 }

 private void mergeSortRec(int low, int high) {

 if (low < high) {

 int mid = (low+high)/2;

 mergeSortRec(low, mid);

 mergeSortRec(mid+1, high);

 merge(low, mid+1, high);

 }

 }

Merge Sort Analysis - Summary

If we look at the structure of the recursion, separate from the

order in which merges actually occur, we get a tree like

structure. Consider running a merge sort on the following 8

elements:

8 6 1 7 3 5 4 2

Our tree structure looks like this:

Notice that at each "level" of the tree we do roughly n steps in

several Merges, where n is the original array length. Thus, to

calculate a total run time, we just need to know how many levels

there are in this computation tree. Since we divide by 2 at each

level, let k equal the number of times we divide until we get to a

row of all individual cells. We get the following equation:

𝒏

𝟐𝒌
= 𝟏

𝒏 = 𝟐𝒌

𝒌 = 𝒍𝒐𝒈𝟐𝒏

It follows that the total number of steps in Merge Sort is roughly

n x log2n (times a constant). Thus, Merge Sort runs in O(nlgn)

time for an array of size n.

