
Defining Your Own Classes

In C, you are allowed to define a struct and then define

variables of that struct. But Java allows you to define your own

class. This means not only defining the data structure, but also

definition the methods (functions) that operate solely on

objects of the class.

Here are the components of a class:

1) Instance Variables

2) Constructor(s)

3) Methods

The instance variables specify the different data components of

an object of the class.

The constructor technically creates and initializes the object

and returns a reference to it. But, really in the code that you

write, all you need to do is initialize the instance variables of

the object.

Each instance (non-static) method you write only gets executed

if it is called with a specific object. (Remember when we called

methods from the String class?) Thus, it is understood that

whenever an instance variable is mentioned in an instance

method, it refers to the instance variable of the object the

method was called on.

In particular, each instance method provides some sort of

functionality that will allow the user to manipulate objects of

your class that they create.

Types of Variables in an instance method:

1) Instance Variables

2) Formal Parameters

3) Local Variables

Each of these is a different kind of variable. Even though you

are allowed to, do NOT name variables of these different

"types" the same name. It will cause confusion, I guarantee it.

(Java has rules that specify which of the variables you are

referring to if the name is ambiguous.)

As already mentioned, instance variables belong to the object

the method was called on. The formal parameters serve the

same purpose they do in all methods - they are the input the

method needs to complete its task. Local variables also serve

the same purpose in instance methods as all methods.

(Note: This handout is included on the class website.)

Here is a portion of the Time class handout:

public class Time {

 private int hours;

 private int minutes;

 public Time(int m) {

 hours = m/60;

 minutes = m%60;

 }

 private int totalminutes() {

 return 60*hours+minutes;

 }

 public boolean equals(Time time2) {

 if (this.totalminutes() == time2.totalminutes())

 return true;

 else

 return false;

 }

 public Time addtime(Time time2) {

 int min = totalminutes() + time2.totalminutes();

 Time temp = new Time(min);

 return temp;

 }

 public String toString() {

 return (hours+" hours and "+minutes+" minutes");

 }

}

The two instance variables that comprise a Time object are two

integers: hours and minutes.

You'll notice that the constructor's job is simply to initialize

the object. Generally the parameters of a constructor are used

to initialize (set the values of) the instance variables.

(Remember how this works when it is called...the constructor

allocates space for the object and returns a reference to that

newly created object. However, these details are hid from you

even when you write the constructor! So, all you have to do is

initialize the instance variables based on the formal parameters

when you write the constructor.)

What NOT to do in a constructor:

1) Mistake the left&right hand sides of assignment statements.

2) Create local variables with the names of either the formal

parameters OR instance variables.

A Note of Visibility Modifiers

For now, the only visibility modifiers we will use are public

and private. These indicate where an instance variable or

method may be accessed. In particular if something is private,

it may only be referred to within the class. If something is

public, it can be used anywhere.

The general rule of thumb is that all instance variables are

made private. The reason is that classes allow us to create

abstract data types. This means that a person can USE an

object without knowing HOW it is stored or HOW the methods

in the class work.

If other programmers are given access to the instance variables

of the objects they create, then they have the power to

manipulate the object any way they want. BUT, in order to use

this power effectively, the user must understand the details of

HOW the object works. THIS DEFEATS THE WHOLE

PURPOSE OF FORMING CLASSES IN THE FIRST

PLACE!!!

Generally, most methods are made public so that others can

use them. However, it is not inconceivable to design a private

method. Consider the totalminutes method in the Time class

above. There is no need to allow someone USING the class to

call this method. Rather, I have simply written it so that I can

carry out other methods (such as equals and addtime) with a

more efficient design. Since the purpose of the method is

internal to making other methods in the class, I have chosen to

make it private.

Use of this

You'll notice that inside of the equals() method I have used an

object called this. This can ONLY be used inside of an instance

method of a class. In particular, this refers to the object the

method was called on. I wrote it in this method to be explicit. If

you look at the line:

if (this.totalminutes() == time2.totalminutes())

you'll see that the boolean expression is comparing the total

number of minutes in the object the method is called on WITH

the total number of minutes in the object time2.

Although I have been explicit here, it was not necessary to do

so. Consider this line from the addtime method:

int min = totalminutes() + time2.totalminutes();

Whenever an instance method call is made without the object

specified inside of another instance method, the call is

AUTOMATICALLY made on the object the original method

was called on, (which is this.)

There are some cases where it is necessary to use this, but

usually, one can get away without using it. Standard

convention is to do so - my guess is simply to save typing.

Consider the constructor rewritten with these two assignment

statements:

this.hours = m/60;

this.minutes = m%60;

This (no pun intended) seems like a little overkill...

addtime Method

In this method I take in a Time object and return a Time

object as well. (Notice the similarity of this prototype to that of

several methods in the String class, such as concat.)

Here is the code again:

 public Time addtime(Time time2) {

 int min = totalminutes() + time2.totalminutes();

 Time temp = new Time(min);

 return temp;

 }

In order to complete the task, I first need to compute the sum

of the minutes in both objects(this and time2). I do this in the

first line using the totalminutes method.

Next, I need to create a Time object using the computed

information. This can be done with a call to the constructor.

Finally, I need to return a reference to the newly created

object. (This is temp.)

As we can see here, what all the String methods that return a

String must do is make a call to a String constructor inside the

method and return a reference to that object that was created.

Alternate version of addtime

If we wanted addtime to automatically change the current

object to the sum of the two times instead of returning a new

object, we could write it as follows:

 public void addtime(Time time2) {

 int min = totalminutes() + time2.totalminutes();

 hours = min/60;

 minutes = min%60;

 }

Once again, we must calculate the sum of the total number of

minutes in the current object and time2. But, after this

calculation, rather than creating a new object, what we want to

do is change the current object to reflect this time. We can do

this by resetting both the hours and minutes components of the

current object as shown above.

Thus, when this method is called (as opposed to the previous

one), the object the method is called upon changes to store the

sum of its "old" time and time2's time.

