
Minimum Spanning Trees 

 
In this lecture we will explore the problem of finding a 

minimum spanning tree in an undirected weighted graph (if 

one exists). First let's define a tree, a spanning tree, and a 

minimum spanning tree: 

 

tree: A connected graph without cycles. (A cycle is a path that 

starts and ends at the same vertex.) 

 

spanning tree: a subtree of a graph that includes each vertex of 

the graph. A subtree of a given graph as a subset of the 

components of that given graph. (Naturally, these components 

must form a graph as well. Thus, if your subgraph can't just 

have vertices A and B, but contain an edge connecting vertices 

B and C.) 

 

Minimum spanning tree: This is only defined for weighted 

graphs. This is the spanning tree of a given graph whose sum 

of edge weights is minimum, compared to all other spanning 

trees. 



Crucial Fact about Minimum Spanning Trees 

 
Let G be a graph with vertices in the set V partitioned into two 

sets V1 and V2. Then the minimum weight edge, e,  that 

connects a vertex from V1 to V2 is part of a minimum spanning 

tree of G. 

 

Proof: Consider a MST T of G that does NOT contain the 

minimum weight edge e. This MUST have at least one edge in 

between a vertex from V1 to V2. (Otherwise, no vertices 

between those two sets would be connected.) Let G contain 

edge f that connects V1 to V2. Now, add in edge e to T. This 

creates a cycle. In particular, there was already one path from 

every vertex in V1 to V2 and with the addition of e, there are 

two. Thus, we can form a cycle involving both e and f. Now, 

imagine removing f from this cycle. This new graph, T' is also a 

spanning tree, but it's total weight is less than or equal to T 

because we replaced e with f, and e was the minimum weight 

edge. 

 

Each of the algorithms we will present works because of this 

theorem above. 

 

Each of these algorithms is greedy as well, because we make 

the "greedy" choice in selecting an edge for our MST before 

considering all edges. 

 

 

 

 

 

 

 

 



Kruskal's Algorithm 

 
The algorithm is executed as follows: 

 

Let V =  

For i=1 to n-1, (where there are n vertices in a graph) 

 V = V  e, where e is the edge with the minimum edge 

        weight not already in V, and that does NOT 

    form a cycle when added to V. 

Return V 

 

Basically, you build the MST of the graph by continually 

adding in the smallest weighted edge into the MST that doesn't 

form a cycle. When you are done, you'll have an MST. You 

HAVE to make sure you never add an edge the forms a cycle 

and that you always add the minimum of ALL the edges left 

that don't.  

 

The reason this works is that each added edge is connecting 

between two sets of vertices, and since we select the edges in 

order by weight, we are always selecting the minimum edge 

weight that connects the two sets of vertices. 

 

In order to do cycle detection here, one idea is to keep track of 

all the separate clusters of vertices. Initially, each vertex is in 

its own cluster. For each edge added, you are merging two 

clusters together. Indicate this by changing a variable that 

stores the cluster ID values of a vertex to be the same as every 

other vertex in the cluster. An edge can NOT be added in 

between two vertices within the same cluster.  The data 

structure that allows us to efficiently take care of this 

bookkeeping is a disjoint set. 



Disjoint Sets 

 
A disjoint set contains a set of sets such that in each set, an 

element is designated as a marker for the set. Here is a simple 

disjoint set: 

 

{1}, {2}, {3}, {4}, {5} 

 

clearly there can only be one marker for each of these sets. 

Given a disjoint sets, we can edit them using the union 

operation. For example: 

 

union(1,3) would make our structure look like: 

 

{1,3}, {2}, {4}, {5} 

 

Here we would have to designate either 1 or 3 as the marker. 

Let's choose 1. Now consider doing these two operations: 

 

union(1,4) 

union(2,5) (Assume 2 is marked.) 

 

Now we have: 

 

{1,3,4}, {2,5} 

 

Now, we can also do the findset operation. 

 

findset(3) should return 1, since 1 is the marked element in the 

set that contains 3. 



Disjoint Set Implementation 

 
A set within disjoint sets can be represented in several ways. 

Consider {2, 4, 5, 8} with 5 as the marked element. Here are a 

few ways that could be stored: 

 

    5                   5                5 

  /  |  \              /    \              | 

2  4   8           2     8            8 

                      |                   /  \ 

                      4                 4   2 

 

We can actually store a disjoint set in an array. For example, 

the sets {2,4,5,8}, {1}, {3,6,7} could be stored as follows: 

 

1 5 7 5 5 7 7 2 

     1  2      3   4       5            6            7            8 

 

The 5 stored in array location 2 signifies that 5 is 2's parent. 

The 2 in array location 8 signifies that 2 is 8's parent, etc. 

 

Here is the visual display: 

 

1  5                      7 

               /      \                /     \ 

     2        4             3      6 

             | 

            8 

 

Based on this storage scheme, how can do implement the initial 

makeset algorithm and how can we implement a findset 

algorithm? 



Union Operation 

 
Given two values, we must first find the markers for those two 

values, then merge those two trees into one. 

 

Consider union(5,1). We could do either of the following: 

 

     1  5 

      |         /  |  \ 

     5        2  4  1 

   /    \      | 

  2    4    8 

  | 

 8 

 

We prefer the latter since it minimizes the height of the tree. 

Thus, in order to implement our disjoint sets efficiently, we 

must also keep track of the height of each tree, so we know how 

to do our merges. Basically we choose which tree to merge with 

which based on which tree has a smaller height. If they are 

equal we are forced to add 1 to the height of the new tree. 

 

Here is how our array will change for each of the options 

above: 

 

First option 

1 5 7 5 1 7 7 2 

     1  2      3   4       5            6            7            8 

 

Second option 

5 5 7 5 5 7 7 2 

     1  2      3   4       5            6            7            8 

 

Notice how quickly we can implement that change in the array! 



Path Compression 

 
One last enhancement we can add to disjoint sets is path 

compression. Every time we are forced to do a findset 

operation, we can directly connect each node on the path from 

the original node to the root. Here's the basic idea: 

 

     1  final tree is  1 

      |                                            /   |   \ 

     5                                          2   8   5 

   /    \                                                   | 

  2    4                                                  4 

  | 

 8 

1 5 7 5 1 7 7 2 

     1  2      3   4       5            6            7            8 

 

First, you find the root of this tree which is 1. Then you go 

through the path again, starting at 8, changing the parent of 

each of the nodes on that path to 1. 

 

1 5 7 5 1 7 7 1 

     1  2      3   4       5            6            7            8 

 

then, you take the 2 that was previously stored in index 8, and 

then change the value in that index to 1: 

 

1 1 7 5 1 7 7 1 

     1  2      3   4       5            6            7            8 

 

It has been shown through complicated analysis that the worst 

case running time of t operations is O(t(t,n)). Note that (t,n) 

 4 for all n  1019728, so for all practical purposes on average, 

each operation takes constant time. 



Prim's Algorithm 

 
This is quite similar to Kruskal's with one big difference: 

 

The tree that you are "growing" ALWAYS stays connected. 

Whereas in Kruskal's you could add an edge to your growing 

tree that wasn't connected to the rest of it, here you can NOT 

do it. 

 

Here is the algorithm: 

 

1) Set S = . Create a priority queue of edges Q = . 

2) Pick any vertex in the graph. 

3) Add the minimum edge incident to that vertex to S, and add 

all edges adjacent to S into Q. 

4) Continue to add edges into S (n-2 more times) using the 

     following rule: 

 

     Add the minimum edge weight to S that is incident to S 

     but that doesn't form a cycle when added to S. 

 

We do this (cycle detection) by deleting the minimum from Q 

until we get an item that connects a vertex from within S to a 

vertex out of S. 

 

Once again, this works directly because of the theorem 

discussed before. In particular, the set you are growing is the 

partition of vertices and each edge you add is the smallest edge 

connecting that set to its complement. 

 

 


