
Floodfill Algorithm

A floodfill is a name given to the following basic idea:

In a space (typically 2-D or 3-D) with a initial starting

square, fill in all the areas adjacent to that space with some

value or item, until some boundary is hit. As an example,

imagine an input 2-D array that shows the boundary of a

lake (land is designated with * characters.)

** *** *

* * *

* * *

* *

* * *

Now, imagine that you wanted to fill in a “lake” with the ~

character. We’d like to write a function that takes in one

spot in the lake (the coordinates to that spot in the grid), and

fills in each contiguous empty location with the ~ character.

Our final grid should look like:

~~*~~*

~~~~~~~*

~~~~~~~*

~~~~~~~~

~~~~~~~*

Of course, in this particular, example, we could just fill in all

spaces with ~ characters, but it’s easy to imagine a larger

grid where we just fill in this one lake and not other areas

with spaces.

Depending on how the floodfill should occur (do we just fill

in each square above, below, left and right, or do we ALSO

fill in diagonals to squares already filled), the basic idea

behind a recursive function that carries out this task is as

follows (this is just a very rough sketch in pseudocode:

public static void FloodFill(char[][] grid,

int x, int y) {

 grid[x][y] = FILL;

 for (each adjacent location i,j to x,y) {

 if (inbounds(i,j) && grid[i][j]!=FILL)

 FloodFill(grid, i, j);

}

When we actually write code for a floodfill, we may either

choose to use a loop to go through all adjacent locations, or

simply spell out the locations, one by one. If there are 8

locations, a loop is usually desirable. If there are 4 or fewer,

it might just make sense to write each recursive call out

separately.

Minesweeper - Recursive Clear

Minesweeper is the popular game included with Windows where the

player has to determine the location of hidden bombs in a

rectangular grid. Initially, each square on the grid is covered. When

you uncover a square, one of three things can happen:

1) A bomb is at that square and you blow up and lose.

2) A number appears, signifying the number of bombs in the

adjacent squares.

3) The square is empty, signifying that there are no adjacent bombs.

In the real minesweeper, when step 3 occurs, all of the adjacent

squares are automatically cleared for you, since it's obviously safe to

do so. And then, if any of those are clear, all of those adjacent

squares are cleared, etc.

Step 3 is recursive, since you apply the same set of steps to clear

each adjacent square to a square with a "0" in it.

I am going to simplify the code for this a bit so that we can focus on

the recursive part of it. (I will replace some code with comments that

simply signify what should be done in that portion of code.) The full

example is posted online under the Sample Programs. Comments

have been removed so the code takes up less space.

The key here is ONLY if we clear a square and find 0 bombs

adjacent to it do we make a recursive call. Furthermore, we make

SEVERAL recursive calls, potentially up to 8 of them.

final public static int[] DX = {-1,-1,-1,0,0,1,1,1};

final public static int[] DY = {-1,0,1,-1,1,-1,0,1};

public static int domove(char[][] board, char[][] realboard,

 int listbombs[][2], int row, int column) {

 int i, j, num;

 if (realboard[row][column]=='*') {

 // Hit a bomb, losing move…

 }

 else if (board[row][column]!='_') {

 // This square was previously cleared…

 }

 else {

 // This calculates the # of adjacent bombs.

 num = numberbombs(row, column, listbombs);

 board[row][column]=(char)(num+'0');

 // If there are no adjacent bombs, we can recursively clear.

 if (num == 0) {

 // Traces through all 9 squares in the box around row,col.

 for (i=0; i<dx.length; i++)

 if (valid(row+DX[i],column+DY[i]) &&

 (board[row+DX[i]][column+DY[i]]=='_'))

 domove(board, realboard, listbombs, row+DX[i],

 column+DY[i], totalmoves);

 } // end-if num==0

 return 0;

 } // end else

}

In this code, a for loop structure with two constant arrays

for DX and DY helps us iterate through all the adjacent

squares:

 for (i=0; i<dx.length; i++)

Basically, DX[i] and DY[i] represent the offsets for row and

column, respectively, for all possible adjacent squares.

Thus, the following if statement is critical:

 if (valid(row+i,column+j) &&

 (board[row+i][column+j]=='_'))

The first clause in the if statement prevents array out of

bounds errors. The second clause in the if statement

prevents from clearing a square that was previously cleared.

Only if these two tests are passed do we recursively clear the

square with the location

row+i, column+j

In essence, we are performing a floodfill of all adjacent

squares with no adjacent bombs, starting from the initial

chosen location by the user.

Programming Contest Example: Golf Fine

The following question is taken from a high school computer

programming contest held at University of Florida on

January 28, 2010. Its solution involves a floodfill.

The question is included on the following two pages. That is

followed by a discussion of how to solve the problem

utilizing the floodfill idea, followed by the code that solves

the problem.

Note: The input for the problem (for this contest) was

supposed to come from the keyboard. I have written my

solution so that the input is read in from a file called,

“golf.txt”.

To fully test this program, one would have to test it many

times with different input files, since the format in which the

question is posed only tests one case at a time.

Golf Fine

Land development company Developers-R-Us has been in constant battle with environmentalists

for decades. In recent years, the company has been responsible for destroying the habitat of the

Michigan monkey flower, and has faced large fines as a consequence. The lawyers for this land

development company have thought up a new idea - a sort of loophole in the system. The

company has purchased a large plot of land, but will not develop all of it, thus incurring fines

only for those areas containing monkey flowers that are adjacent (horizontally, vertically, or

diagonally) to developed land. The environmental engineers of Developers-R-Us have provided

you, the software engineer, with a series of grid maps representing the area where a new golf

course will be built. They would like to determine the area which will be covered by the

proposed golf course, as well as the fines the company will have to pay for building it. You will

be provided with a 10 x 10 grid, representing the 100 square acres being used to build the golf

course. Each acre of monkey flowers along the path costs $50 000.

Input

Input will consist of ten lines, each containing ten characters, where:

• . - represents land not being developed

• s - represents the start of the golf course; there will be exactly one such acre in the

 whole gridmap

• d - represents an acre of developed land; note that there may be developed land which is

 not connected (horizontally, vertically, or diagonally) to the golf course, but this is

 not your problem

• m - represents an acre of land containing Michigan monkey flowers

Output

Provide, on two separate lines, the number of acres being developed for the golf course, and the

fine for building the course next to areas containing Michigan monkey flowers. Pay close

attention to the output format for the fine: there must be a dollar sign at the beginning of the line,

and a space should be used as thousands separator.

Example

Input
..........

.sd.......

..d.......

..dm......

..d.......

..d...m...

..ddddm...

..........

...ddd....

...mmm....

Output
10

$150 000

Our goal is to identify how many adjacent squares (directly

or indirectly) to ‘s’ are part of the golf course.

This indicates that we ought to do a floodfill starting at

character ‘s’.

Furthermore, we can assume that our floodfill should go in

all eight directions. (Though this isn’t directly stated, it’s

probably the best assumption to make, since this is how we

are to tell whether or not the flowers are adjacent to the

course.)

There is one more complicating factor for this problem after

we do our floodfill:

Counting the adjacent squares that have monkey flowers in

them

First, let’s concentrate on the floodfill:

This will be very, very similar to Minesweeper, except that

we should fill our squares with ‘s’ and ‘d’ with different

characters to mark the golf course. In the following

implementation, the character ‘X’ is chosen. This is an

arbitrary choice. Any choice of character that isn’t already

in the grid would be fine.

Basically, we will change the grid at the location to be filled

to the character ‘X’. Then, for each adjacent location, we’ll

see if it’s part of the course (with a ‘d’). If so, we’ll continue

the floodfill at that location.

Code for Golf Fine Floodfill

final public static int[] DX = {-1,-1,-1,0,0,1,1,1};

final public static int[] DY = {-1,0,1,-1,1,-1,0,1};

public static void floodfill(char[][] grid, int x, int y) {

 int i,j;

 // Mark this spot

 grid[x][y] = 'X';

 // Go through all valid adjacent squares with a 'd'.

 for (i=0; i<DX.length; i++)

 if (inbounds(x+DX[i],y+DY[i]) && grid[x+DX[i]][y+DY[i]]=='d')

 floodfill(grid,x+DX[i],y+DY[i]);

}

This should look very, very similar to the Minesweeper code.

The only reason it’s much shorter is the action we need to

take to clear a square is very simple (just putting an ‘X’ in

that slot) and there are fewer contingencies for other

situations.

Also, note that the initial call to this function has the x-y

coordinates of the spot of the ‘s’, so that is why the floodfill

doesn’t look for the character ‘s’ at all.

The rest of the code is in the attached file, golf.java.

