Strings in C

Basically, strings are character arrays in C. However, that isn't the complete picture. It would be nice if strings didn't always have to be the same length, as character arrays are. In order to deal with this issue, strings in C, by default, are null terminated. This means that the last character storing a string is the null character, '\0'.

For example, the following is a valid way to initialize a string to store "hello";

char word[20];

word[0] = 'h'; word[1] = 'e';

word[2] = 'l'; word[3] = 'l';

word[4] = 'o'; word[5] = '\0';

In this example, the character array word is storing a string of length 5. Notice that we actually store six characters here. This means that a character array of size 20 can actually store a string with a maximum length of 19, NOT 20, since the last character in the array must be reserved for the null character.

Another way to read in a string is from the keyboard directly into a character array:

scanf("%s", word);

This reads in all the characters typed in until whitespace is read in and automatically adds the null character to the end of what is read in. One consequence of this idea is that the literals 'a' and "a" are different. The first is a single character, the second is stored in a character array of at least size two, where the last character is the null character.

Contest Question Example

Given a string and a character, count how many times the character appears in the string.

The input file will start with a single positive integer, n, representing the number of input cases. The following n lines will contain each case, one per line. Each of these lines begins with a string of lowercase alphabetic letters of no more than 100 characters. This is followed by a space and a single character, for which to search.

For each case, output a sentence of the following form:

The letter L appears in the word W X times.

where L is the letter for the input case, W is the word for the input case and X is the number of times L appears in W.

Read the input from charcount.in.
#include <stdio.h>

#include <string.h>

int solve(char word[], int ch);

int main() {

 FILE* ifp = fopen("charcount.in","r");

 int numcases;

 fscanf(ifp, "%d", &numcases);

 int i;

 for (i=0; i<numcases; i++) {

 char word[101];

 char ch[2];

 fscanf(ifp,"%s%s", word, ch);

 int answer = solve(word, ch[0]);

 printf("The letter %c appears in the word %s %d
 times.\n", ch[0], word, answer);

 }

 fclose(ifp);

}

int solve(char word[], int ch) {

 int i, cnt=0;

 for (i=0; i<strlen(word); i++) {

 if (word[i] == ch) {

 cnt++;

 }

 }

 return cnt;

}
Character Counting Example
In the previous example we just counted the number of times one letter appeared in a string. What if we wanted to know how many of each letter appears in the file?

We can approach this problem in two ways, when it comes to reading in the information:

1) Read in each character in the file, one by one.

2) Read in each string in the file, and then process each string.

Whichever way we choose to read in the data, how we solve the problem will be the same. We must keep a frequency array, which stores the number of a’s, b’s, c’s, etc. that we see. Here is an illustration of how to initialize the array:

	Index
	0
	1
	2
	3
	…
	22
	23
	24
	25

	Freq

Array
	0
	0
	0
	0
	0
	0
	0
	0
	0

Now, in index 0, we want to store the number of a’s. In index 1, we want to store the number of b’s, etc. Let’s say we read in the words “wax” and “cab”. Then we would want to tally 2 a’s, 1 b, 1 c, 1 w and 1 x. Our frequency array would then look like this:
	Index
	0
	1
	2
	3
	…
	22
	23
	24
	25

	Freq

Array
	2
	1
	1
	0
	0
	1
	1
	0
	0

The key is this: given a letter, determine the number it corresponds to, from 0 to 25. The problem is that internally, the letters aren’t stored from 0 – 25. They are stored with ascii values. The capital letters are 65 – 90 and the lowercase letters are from 97 – 122. No one wants to memorize these ranges. Instead, we can do arithmetic between characters. If I know that the character variable ch stores a lower case letter, then I can do the following to extract its value from 0 – 25:

ch – ‘a’
If I have the number stored in a variable num and want to print the corresponding lower case letter, I can do this:

printf(“%c”, num + ‘a’)

Thus, to go from character to number, subtract either ‘a’ or ‘A’ (depending on whether you are dealing with lower or uppercase letters), and to go from number to character, add either ‘a’ or ‘A’ and use the %c code for printing.

Using these ideas, we can put together the following program, which counts the number of each letter in the input file, input.txt. Note the user of the macros isalpha and tolower from ctype.h. These do what you think they should do.

#include <stdio.h>

#include <ctype.h>

int main() {

 int index, freq[26];

 char ch;

 FILE* fin;

 fin = fopen("input.txt", "r");

 for (index = 0; index<26; index++)

 freq[index] = 0;

 fscanf(fin, "%c", &ch);

 while (!feof(fin)) {

 if (isalpha(ch))

 freq[tolower(ch)-'a']++;

 fscanf(fin, "%c", &ch);

 }

 printf("Letter\tFrequency\n");

 for (index = 0; index<26; index++) {

 printf("%c\t%d\n", 'a'+index, freq[index]);

 }

 fclose(fin);

 return 0;

}

If we wanted to read in string by string, we could do this in the processing part. (We’ll assume that no single word has more than 999 characters in it.) Here are the changes:
 char str[1000];

 fscanf(fin, "%s", str);

 while (!feof(fin)) {

 int i;

 for (i=0; i<strlen(str); i++) {
 if (isalpha(str[i]))

 freq[tolower(str[i])-'a']++;

 }

 fscanf(fin, "%s", str);

 }

Standard Libary (string.h) functions

Here are three common string functions in the library string.h:
// This function compares the two strings s1 and s2. If s1 comes

// first alphabetically, an integer less than 0 is returned. If the

// two strings are equal 0 is returned. If s2 comes before s1

// instead, an integer greater than 0 is returned.

int strcmp(const char *s1, const char *s2);

// This contents of s2 are copied into s1. This works

// DIFFERENTLY than s1 = s2, which would just copy

// a pointer.

int strcpy(char *s1, const char *s2);

// Returns the number of characters in s before a '\0' is

// encountered.

int strlen(const char *s);

These functions come in handy with dealing with strings. It's important to follow the specification for each function when calling them. As mentioned above, the const guarantees that the contents of that string won't be changed by the function.

Finding the First String alphabetically

We know that the student with the first last name alphabetically always gets to go first! Here's a program to determine that student:

int main() {

 char curname[30], firstname[30];

 int numstuds, i;

 // Get number of names.

 printf("How many students are there?\n");

 scanf("%d", &numstuds);

 printf("Enter their last names.\n");

 for (i=0; i<numstuds; i++) {

 scanf("%s", curname);

 // Update the first name seen.

 if (i==0) {
 strcpy(firstname, curname);

 }
 // Update if we find a new first name.

 else if (strcmp(curname, firstname) < 0) {
 strcpy(firstname, curname);
 }
 }

 printf("The first person in line is ");

 printf("%s.\n", firstname);

 return 0;

}

More on String Functions

The key to using these String functions, (and any prewritten functions), is to understand exactly what the given functions do, so that you can call them with the appropriate parameters, in the appropriate manner.

In the program above, we wanted to "store" the name of the earliest name alphabetically we had seen. However, the statement

firstname = curname;

would have been inadequate, because it just changes a pointer. (That's essentially what a string is.) Instead the function strcpy, does the trick. In using it, we must make sure we pass in the proper parameters:

strcpy(firstname, curname);

This copies the value of the string curname into the string firstname, which is exactly what we want.

Furthermore, strcmp works in an even less obvious way than strcpy did. It returns an integer from comparing two strings. Basically, it's similar to checking for <, ==, and >, all at once. If the first is the correct relationship between the two strings, a negative integer is returned, if they are equal, 0 is returned, and otherwise, a positive integer is returned. Since we are checking to see if curname comes before firstname, the appropriate boolean condition is:

strcmp(curname, firstname) < 0
