for Loop
Motivation

Using our current set of tools, repeating a simple statement many times is tedious. The only way we can currently print out “I love C Programming!” ten times is as follows:

printf(“I love C Programming!”);

printf(“I love C Programming!”);

printf(“I love C Programming!”);

printf(“I love C Programming!”);

printf(“I love C Programming!”);

printf(“I love C Programming!”);

printf(“I love C Programming!”);

printf(“I love C Programming!”);

printf(“I love C Programming!”);

printf(“I love C Programming!”);

Part of what makes a computer powerful is its ability to repeat many instructions quickly. But, clearly, copying sets of instructions many times by hand like the one above would make anyone HATE C Programming. Luckily, the C language provides us with multiple tools for repetition where we’ll simply specify which statements we want repeated and a way to determine how many times to repeat those statements.

Definition

The for loop allows us to repeat a set of statements a fixed number of times. Here is the syntax of a for loop:
for (<init stmt>; <boolean expression>; <inc stmt>) {

 stmt1;

 stmt2;

 ...

 stmtn;

}

Here is how the computer executes a for loop:

1) The initial statement is executed.

2) The Boolean expression is evaluated.

3) If it’s true, we execute stmt1 though stmtn followed by the increment statement. Then we proceed back to 2.

4) If the Boolean expression is false, we are done with the statement and continue execution after the for loop.

Although the initial statement and increment statement can be any regular C statements, typically the initial statement sets the counting variable to its first value and the increment statement changes the counting variable for the next loop iteration.
Flow Chart Representation

Here is the flow chart representation for the segment of generic code shown below:

for (<init stmt>; <boolean expression>; <inc stmt>) {

 stmt1;

 stmt2;

}

stmt3;

[image: image1.png]it sint
= st
N
s2
i sint
i s

€T

I love C Programming 10 Times Over
Now, with the for loop, we can more succinctly write the code that prints out “I love C Programming!” ten times.

Our loop variable naturally keeps track of counting how many times we've printed the message:

Let’s take a look at a program that accomplishes our task:

#include <stdio.h>

const int NUM_TIMES = 10;
int main() {

 int count = 0;

 for (count=0; count < NUM_TIMES; count=count+1) {

 printf(“I love C Programming!\n”);

 }

 return 0;

}
Now, let’s trace through our program. In the beginning of it, the picture of memory looks like the following:

[image: image2.png]count

At this point in time, count is less than NUM_TIMES, so the Boolean expression evaluates as true and we continue into the loop and print

I love C Programming!

Right after we do this, we need to change count to indicate that we’ve printed our message once. At this point in time, count is 0, so count + 1 evaluates to 1. Thus, we’ll change count to 1:

[image: image3.png]count

Next, since we’ve reached the end of the loop body, we go back to the top of the loop and check our Boolean expression. This time, count is 1, which is still less than NUM_TIMES. So, we enter the loop a second time, print our phrase a second time and then change count. This time count is 1, so count + 1 evaluates to 2, so we change the variable count to 2. Hopefully by now you’ll notice that any statement of the form

<var> = <var> + 1;
simply adds one to the variable. From here, we go back to check the Boolean expression again and continue in the same manner. Eventually, we’ll get to the point where the output is
I love C Programming!

I love C Programming!

I love C Programming!

I love C Programming!

I love C Programming!

I love C Programming!

I love C Programming!

I love C Programming!

I love C Programming!

and the variable count equals 9. At this point, we check our Boolean expression and see that count, which is 9, is less than NUM_TIMES. We then print our message for a tenth time. Then we change count from 9 to 10:

[image: image4.png]count

10

At this point, when we check our Boolean expression, it is false, since count, which is 10, is NOT less than NUM_TIMES. Thus, we exit the loop and continue to the statement return 0, which terminates the program.

In general, after examining this program in detail it should be fairly clear that we can execute any set of statements a set number of times using the same general construct:

int count;

for (count=0; count < NUM_TIMES; count=count+1) {

 // Insert code to be repeated here.

}

where NUM_TIMES is set to however many times the code block is to be repeated.
I love C Programming with a Twist
Imagine that instead of just outputting the same string each time, we would like to print our list as a numbered list. Namely, the first couple lines of output would read:

1. I love C Programming!

2. I love C Programming!

A very minor adjustment has to be made in our program. In fact, we can simply make the following slight change to the printf statement:

printf(“%d. I love C Programming!\n”, count+1);

The key idea here is that now, since we have an expression based on a variable in this line, on different loop iterations, something slightly different will print. In particular, the very first time through, count will be 0. The expression count+1 evaluates to 1 and this is exactly what gets printed.

Note that simply putting down the expression count+1 in the printf DOES NOT actually change the value of count. Rather, count stay at 0, but instead of printing count, we print a value that is one greater than the current value of count. The statement

count = count + 1;
in the following line is still needed to actually change count.

Note that this isn’t the only way to solve the problem. Consider the following program that is slightly different than the idea mentioned above that still outputs the correct numbered list:

#include <stdio.h>

const int NUM_TIMES = 10;
int main() {

 int count = 1;

 for(count=1; count <= NUM_TIMES; count=count+1) {

 printf(“%d. I love C Programming!\n”, count);

 }

 return 0;

}
It’s important to realize that problems can be solved in different ways, even one as simple as this one. In our original solution, we used a 0-based counting system, starting our counting variable at 0. Because our counting variable started at 0, but our output started at one, we had to adjust the value outputted to the screen (count + 1). In our second example, we chose to use a 1-based counting system so that count could simply be outputted.
All of this is evidence that when dealing with loops, attention to detail and consistency are very important. It’s fine to start count at either 0 or 1, but the rest of the code must be consistent with this starting value. Similarly, it’s fine to output count or count+1, so long as the rest of the code is consistent. (Note: in certain situations we’ll find the0-based counting system to be more natural and in others we’ll prefer the 1-based system.)
Furthermore, the key difference in this example as compared to the previous example is that we are utilizing the variable helping us to count within the main body of the loop. This particular example is the most simple example of this as we are simply outputting the counting variable’s value.

Consider writing programs that output the following sequence of numbers:

2, 4, 6, 8, …, 100

1, 3, 5, 7, …, 99

2, 4, 8, 16, …, 1024

Can you find a way to express the output in terms of the counting variable?

Here is a segment of code that prints out the first example:

int count;

for (count = 2; count<=100; count=count+2) {

 printf("Count is now %d.\n", count);
Try to figure out the other two sequences!
Example: Add Up the Numbers from 1 to 100
Now let’s look at a slightly more difficult example that utilizes the counting variable inside of the loop.

Consider adding the numbers 1, 2, 3, 4, …, 100. If you were to do this task by hand, you’d start a counter at 0, add in 1 to it to obtain 1, then add in 2 to it to obtain 3, then add in 3 to it to obtain 6, then add in 4 to it to obtain 10, etc.

Let’s use the for loop to automate this task.

We will need a counting variable similar to count in the previous example. But, we will also need a variable that keeps track of our running sum. Let’s call this variable sum. Any variable that keeps a running tally going is known as an accumulator variable. The idea behind accumulator variables is critical. It is used in many practical programs.
Let’s take a look at a program that solves this problem and trace through the first few steps carefully:

#include <stdio.h>

const int MAX_TERM = 100;
int main() {

 int sum = 0, count = 1;

 for (count=1; count <= MAX_TERM; count=count+1) {

 sum = sum + count;

 }

 printf(“The total is %d.\n”, sum);

 return 0;

}
At the very beginning of the program, before the loop starts, memory looks like the following:
[image: image5.png]count

Initially, the Boolean expression for the while loop is true, since count, which is 1, is less than or equal to MAX_TERM. Now we encounter the critical line of code:

sum = sum + count;

Currently, sum is 0 and count is 1, so adding we get 1.This value is then stored back into the variable sum:

[image: image6.png]count

Next, we increase count by 1, so now our picture looks like:

[image: image7.png]count

We then check the Boolean expression again and see that it is true. At this point in time, we’ve added in 1 to our total and are ready to add in 2. Now, we hit the line

sum = sum + count;

This time sum is 1 and count is 2, which add up to 3. This value gets stored in sum. Then, we follow this line by adding one to count, which changes to 3:

[image: image8.png]count

Now, we’ve added up 1 and 2 and are waiting to add in the next number, 3. The Boolean expression is still true, so we then add sum and count to obtain 6 and then change sum to 6. This is followed by adding one to count, making it 4:

[image: image9.png]count

At this point, hopefully the pattern can be ascertained. At the end of each loop interation, sum represents the sum of all the numbers from 1 to count-1, and count is the next value to add into the sum. The key idea behind an accumulator variable is that you must initialize it to 0, and then each time you want to add something into it, you use a line with the following format:

<accum var> = <accum var> + <expr to add in>;

Whichever variable is the accumulator variable is the one that is set, using an assignment statement. It’s set to the old value of the variable plus whatever value needs to be added in.
In our example, if right before the very last loop iteration, the state of the variables is as follows:

[image: image10.png]count

100

4950

Now, we go and check the Boolean expression and see that count is still less than or equal to MAX_TIMES (both are 100), so we enter the loop one last time. We add sum and count to get 5050 and then update count to be 101:

[image: image11.png]count

101

[s0s0

Now, when we check the Boolean expression, it’s false. We exit the loop and print sum.

To better understand this example, add the line:

printf(“count = %d, sum = %d\n”, count, sum);

as the last line of the body of the loop and adjust MAX_TERM as necessary:

 for (count=1; count <= MAX_TERM; count=count+1) {

 sum = sum + count;

 printf(“count = %d, sum = %d\n”, count, sum);

 }

When programs aren’t working properly, inserting simple printf statements like this one can help uncover the problem. This process of finding mistakes is called debugging. Though inserting printf statements isn’t the ideal way to debug, it’s the most simple way and recommended for beginners. More will be mentioned about debugging later. In this particular example, the printf is to aid understanding, so that we can see what each variable is equal to at the end of each loop iteration.

Now, consider editing this program so it calculated the sum of the numbers 1, 3, 5, …, 99. We just change MAX_TERM to 99 and change our loop as follows:

 for (count=1; count<=MAX_TERM; count=count+2) {

 sum = sum + count;

 }

The key difference here is that count no longer represents how many times the loop has run. Rather, count simply represents the next number to add.

Yet another approach edits the loop as follows:

 for (count=1; 2*count-1 <= MAX_TERM; count=count+1) {

 sum = sum + (2*count – 1);

 }

In this approach, count keeps track of how many times the loop has run, but when we need to access the current term, we use an expression in terms of count (2*count – 1) that equals it.

As previously mentioned, programming problems can be solved in many different ways. It’s important to get comfortable manipulating counting variables in loops as shown in these examples so that a programmer can solve different types of problems.

Increment and Decrement Operators
At this point, you are probably tired of seeing statements of the form
count = count + 1;

Unfortunately, this type of statement is one of the most common in programming and continues to appear in both simple and complicated programs. It appears so often that the C language has a shorthand equivalent for it:
count++;

Now, we can rewrite our original for loop as follows:
int count;

for (count=0; count<10; count++)

 printf(“I love C Programming!\n”);
Similarly, if you want to subtract one from the variable count, you can do it as follows:

count--;

Once again, it’s perfectly fine for the -- to precede the variable, and differences between the two only occur when the expression is part of a greater statement. As a single statement or in a for loop, the two are equivalent.

Note that there is a difference between the following two expressions:

count++

count+1

The first actually CHANGES the value of the variable count by adding one to it while the latter does NOT. Rather, the latter is simply an expression that evaluates to one more than the variable count, but leaves the value of count unchanged.
Another Shorthand Assignment

In general, as we’ve seen, it’s typical to update the value of a variable by adding something to it. In addition, we could subtract something from a variable, multiply a variable by something, divide a variable by something, and mod a variable by something.

Each of these operations takes on the following general syntax:

<var> = <var> <op> <expression>;
The equivalent shorthand notation that C provides for any statement of this form is as follows:

<var> <op>= <expression>

Thus, the statement

count = count + 2*x + 1;

Can be rewritten as

count += (2*x + 1);
Sum Example Revisited

With the for loop, the sum example also becomes more simple to express:

#include <stdio.h>

const int MAX_TERM = 100;
int main() {

 int sum = 0, count;

 for (count = 1; count <= MAX_TERM; count++) {
 sum += count;

 }
 printf(“The total is %d.\n”, sum);

 return 0;

}
Notice that our simplification yields us with a loop body of only one statement, so we don’t need a block of statements any more. Also, visually looking at the for loop, it’s easy to inspect that we are counting from 1 to MAX_TERM and adding each of these items into sum. In essence, the three items in the for loop give us all the information we need to know about the loop structure: where do we start, where do we end, and by how much do we change after each loop iteration.

For example, we can edit the example above to add up the numbers 1, 3, 5, …, 99 as follows:

 for (count = 1; count <= MAX_TERM; count+=2)

 sum += count;

Note: we should also change MAX_TERM to be 99 as well.
Hopefully, these examples make clear that the for loop enhances the readability of almost any “counted” loop, since all the information relevant to how many times the loop runs is all located in the same place.
It should also be noted that it’s good style NOT to change the value of the counting variable anywhere but in the increment statement. While the counting variable can and should be used in the loop body, it should NOT be changed there, since this would make it much more difficult to figure out how many times the loop runs.
Tip Chart Example

Many people are annoyed at having to calculate the tip at a restaurant. To help these people, we can write a program that creates a customized tip chart. The table would list dollar values, perhaps from 10 to 100, and the corresponding tips for each of them. For this particular example, we’ll use 15% as the tip percent, but this will be a constant that can easily be changed.

Notice that this program is similar to the program where we printed out each number in succession. The only difference is that we need to print out each tip with it. Namely, we must multiply our counting variable (which will represent the number of dollars for a meal) by the tip percentage.

Here is the program:

#include <stdio.h>

const double TIP_RATE = 0.15;
const int MIN_PRICE = 10;
const int MAX_PRICE = 100;
int main(void) {

 int price;

 double tip_amt;

 printf(“Price\tTip\n”);
 for (price = MIN_PRICE; price <= MAX_PRICE; price++) {

 tip_amt = price*TIP_RATE;

 printf("$%d\t$%.2lf\n", price, tip_amt);

 }

 return 0;

}

The key idea here is that we use both the loop counting variable, and an expression in terms of it, in the body of the loop.

Here are some natural extensions to this program:

1) Read in the tip rate, minimum price and maximum price from the user, instead of defining them as constants.

2) Print out the chart in different dollar increments (every $2 or $5 dollars, for example).

Finding the Maximum (or Minimum) Value in a List of Numbers
A very common task in programming is determining the maximum or minimum in a set of numbers. Consider the following example where we ask the user to enter in a set of test scores and then print out the maximum score. The key idea is to keep one variable that stores the current maximum seen (which will be the first value entered, originally.) Then, as new numbers are read in, check to see if they are larger than the current maximum. If so, update the maximum to reflect this new information.
Here is the program:

#include <stdio.h>

int main() {

 int numtests, score, max, i;

 printf(“How many scores do you need to enter?\n”);

 scanf(“%d”, &numtests);

 printf(“Please enter each score.\n”);

 scanf(“%d”, &max);

 for (i=1; i<numtests; i++) {

 scanf(“%d”, &score);

 if (score > max)

 max = score;

 }

 printf(“The highest test score was %d.\n”, max);

 return 0;

}

A few things to note in this solution:

1) We directly read in the first score into the variable max, because at the very beginning, this is the largest value seen.

2) Our counting variable is named i. This is a very common convention among C programmers. If needed, both j and k are used as the second and third counting variables.

3) We initialize i to 1 to indicate that we’ve already read in one value. Normally, this loop would have started as 0 and been a 0-based loop. We can see this because the Boolean expression requires i to be strictly less than numtests.

Let’s trace through this program, step by step, so that we can discover how it works. For this example, let’s assume the user enters the following 5 test scores: 78, 93, 74, 94, and 89.

Right before the loop begins, our picture is as follows:

[image: image12.png]sure

78

 As we enter the loop, we set i to 1, check the Boolean condition (which is true), and enter the loop. We read in 93 with the scanf and now our picture is:

[image: image13.png]sure

78

Next, we execute the if statement and see that score is greater than max, which means that we must change the value of max to 93. Basically, if the new number we read in is higher than what we’ve seen so far, we must update the best we’ve seen so far:

[image: image14.png]sure

)

Now, we go to the top of the loop and execute our increment statement, changing i to 2. This is still less than numtests, so we read in 74 to score:

[image: image15.png]sure

)

T4

When we compare score to max, it’s not bigger, so we don’t enter the if statement. Then we go to the top and increment i to 3. Then we read in the next score 94:

[image: image16.png]sure

)

Since score is now bigger than max, we will change max to be 94. We will then update i to 4:

[image: image17.png]sure

E

We enter the last loop iteration, since i is still less than numtests. We read in 89 for score:

[image: image18.png]sure

E

Since score isn’t greater than max, we end the loop iteration and then change i to 5:

[image: image19.png]sure

E

Now, when we check the Boolean condition, it’s false and we exit the loop. The value stored in max, 94, does indeed represent the maximum test score entered.

Here are some natural extensions to this program to consider:

1) Finding the smallest test score in the list.

2) Printing both the largest test score AND how many times it appeared in the list.
