if Statement

Though assignment statements are powerful, not everything can be expressed in the same formula. Take, for example, the following (somewhat illogical) way of pricing pizzas:

$11 per pizza, but for large orders of 20 pizzas or more, you get 30% off.

It's very difficult to write down one assignment statement that implements this pricing scheme. Rather, it seems like if a particular condition is true (you order 20 or more pizzas), we have to execute one extra step (the discount). Thus, we would like to have the facility of executing certain statements SOMETIMES, not always.

The if statement will do this. The basic syntax is as follows:

if (condition) {

 // Work if condition is true

}

The condition is one that evaluates to true or false. In C, true is 1 and false is 0, since there is no special storage for true or false. The most simple types of expressions involve testing conditional relationships with one of the following operators: >, <, >=, <=, ==, !=. The first four mean what one might think they mean. The last two need a bit of explanation. The double equal sign (==) checks for equality between two expressions. This is used because the single equal sign already has a well-defined meaning (assignment operator). In fact, one of the most common mistakes beginning programmers make is typing one equal sign in a condition when two are required. Unfortunately, the compiler does not catch this mistake. Finally, != means "not equal to."
In the set of braces, we can put in as many statements as we would like, that correspond to the work we want to do for that situation.

Now, let's take a look at a program that asks the user for how many pizzas are being ordered, and calculates their total price. (We'll assume a sales tax of 6.5%.):

#include <stdio.h>

const double TAX_RATE = 0.065;

const double PIZZA_PRICE = 11.00;

const double DISCOUNT = 0.30;

int main() {

 int num_pizzas;

 double cost;

 printf("How many pizzas are you ordering?\n");

 scanf("%d", &num_pizzas);

 cost = PIZZA_PRICE*num_pizzas;

 if (num_pizzas >= 20) {

 cost = cost*(1-DISCOUNT);

 }

 cost = cost*(1+TAX_RATE);

 printf("Your pizzas cost $%.2lf.\n", cost);

 return 0;

}

To see why this pricing scheme is illogical, test the program with 15 and 20 pizzas, respectively!

Note that we indent inside the if statement. This lets us easily see which statements are inside the if. Also, notice the placement of the braces that indicate the beginning and end of the if statement. Be consistent with your indenting and placement of braces. It's very, very important.

if-else Statement
Now, consider a situation where depending on the truth of some condition, we want to do one set of statements, OR another set of statements. Imagine a game where we ask two kids to guess a number from 1 to 100. Whichever kid guesses closer wins some candy. In both cases, we want to print out who won, and by how much! For right now, let's ignore situations where there might be ties. We'll deal with this in a later example.
The if-else statement allows us to do this. The basic syntax is as follows:

if (condition) {

 // Work if condition is true

}

else {

 // Work if condition is false

}

Now, let's think about how we might sketch out a program to implement the idea above, and were we might utilize the if-else construct.
Here is a list of steps we must accomplish:

1. Generate our secret number.

2. Ask both users for their guess.

3. Calculate how far away from the secret number each user is.

4. If the first user is closer, print out a corresponding message.

5. Otherwise, print out a message for the second user.

#include <stdio.h>

#include <time.h>

#include <math.h>

int main() {

 srand(time(0));

 int secret_num = rand()%100 + 1;

 int guess1, guess2;

 printf("Person 1, enter your guess from 1-100.\n");

 scanf("%d", &guess1);

 printf("Person 2, enter your guess from 1-100.\n");

 scanf("%d", &guess2);

 int diff1 = abs(secret_num - guess1);

 int diff2 = abs(secret_num - guess2);

 if (diff1 < diff2) {

 printf("Congrats person 1, you win!!!\n");

 }

 else {

 printf("Congrats person 2, you win!!!\n");

 }

 return 0;

}
The problem with this program is that when we test it, we have no idea if it works or not!!! We see that a person won, but we can't tell what the secret number was, or who was actually closer.

We can now use the if statement to add in some statements to help us in this regard. Obviously, when we are playing the game, we don't want the secret number to be printed. BUT, when we are testing and debugging our program, it would be much easier if this information was printed. (Debugging means trying to find the mistakes in the program.)

We can set a flag (a variable that is either 1 or 0, for true or false), at the beginning of our program as a constant, depending on whether or not we want this information to print out. It is ALSO valid to put an integer in the condition for an if statement. The computer will treat any integer except 0 as true, and it treats 0 as false. Thus, we can use a constant flag DEBUG and change it right before we compile and run our program, depending on whether or not we want extra output to be printed to the screen.
Now, take a look at our improved program:

#include <stdio.h>

#include <time.h>

#include <math.h>

const int DEBUG = 1;

int main() {

 srand(time(0));

 int secret_num = rand()%100 + 1;

 if (DEBUG) {

 printf("Secret number is %d.\n", secret_num);

 }

 int guess1, guess2;

 printf("Person 1, enter your guess from 1-100.\n");

 scanf("%d", &guess1);

 printf("Person 2, enter your guess from 1-100.\n");

 scanf("%d", &guess2);

 int diff1 = abs(secret_num - guess1);

 int diff2 = abs(secret_num - guess2);

 if (DEBUG) {

 printf("First difference is %d.\n", diff1);

 printf("Second difference is %d.\n", diff2);

 }

 if (diff1 < diff2) {

 printf("Congrats person 1, you win!!!\n");

 }

 else {

 printf("Congrats person 2, you win!!!\n");

 }

 return 0;

}
Now, when we run our program in debug mode, we can see the secret number and guess accordingly for testing purposes. The second set of debug statements aren't necessary, but they help us check to see if diff1 and diff2 are equal to what we would like them to be equal to.

What happens whent both students are equally far away from the number in this program? Let's remedy the situation.
if-else if-else Statement
After carefully examining the previous game, we realize that we really have three separate situations (player 1 wins, player 2 wins, tie) instead of two. Another version of the if statement will allow us to handle this. The construct for three situations will look like the following:

if (condition1) {

 // Do this if condition1 is true.

}

else if (condition2) {

 // Do this when condition1 is true, condition2 is false

}

else {

 // Do this if both conditions are false.

}

The way this works is as follows:

1) We check condition 1. If it's true, do the associated statements and skip over the other two sets of statements.

2) If condition1 is false, check condition2. If this is true, do the associated set of statements and skip over the else clause.

3) If both were false, just do the statements in the else clause and proceed.

Now, we can edit the last if statement in our program as follows:

 if (diff1 < diff2) {

 printf("Congrats person 1, you win!!!\n");

 }

 else if (diff2 < diff1) {

 printf("Congrats person 2, you win!!!\n");

 }

 else {

 printf("Both of you tied!\n");

 }

In this type of construct, exactly one of the three branches of execution will ALWAYS be executed. Keep in mind that one can have more than three options in this construct. In the following program, we print out a letter grade based on a numerical score using the usual 90-100, 80-90, etc. grading scheme. Since there are 5 possible grades one could achieve, this if statement has 5 separate branches.

#include <stdio.h>

int main() {

 int grade;

 printf("Enter your grade percentage as an integer.\n");

 scanf("%d", &grade);

 if (grade >= 90) {

 printf("You got an A!\n");

 }

 else if (grade >= 80) {

 printf("You got a B.\n");

 }

 else if (grade >= 70) {

 printf("You got a C.\n");

 }

 else if (grade >= 60) {

 printf("You got a D.\n");

 }

 else {

 printf("Sorry, you got an F.\n");

 }

 return 0;

}

Note that one is not required to have an else clause if they have else if clauses. Namely, instead of always having a set of statements to run, depending on the conditions given, if we leave off the else clause, no set of statements may be run.

Consider the following example where we award slices of pizza for books read according to the following chart:
	Number of Books Read (b)
	Slices of Pizza Awarded

	5 ≤ b < 10
	2

	10 ≤ b < 20
	5

	b ≥ 20
	15

Notice that you don't get any pizza slices for reading less than 5 books. In this case, we won't need to have an option for slices awarded.

#include <stdio.h>

int main() {

 int books_read, slices = 0;

 printf("How many books have you read?\n");

 scanf("%d", &books_read);

 if (books_read >= 20) {

 slices = 15;

 }

 else if (books_read >= 10) {

 slices = 5;

 }

 else if (books_read >= 5) {

 slices = 2;

 }

 printf("You get %d pizza slices.\n", slices);

 return 0;

}

Example from Math Class
A common task in Algebra I is to find the equation of a line given two points on the Cartesian plane. Let's write a program to automate that task.
We can solve for the slope of a line using the following formula: (y2 - y1)/(x2 - x1).

But, WAIT!!! If the two x values are equal, we would be dividing by 0!!!

So, before we calculate the slope, we have to check this condition with an if statement.

In this case, the answer is easy. For example, the line through (3, -1) and (3, 7) is simply x = 3.

Alternatively, we calculate the slope using the usual formula to obtain the m in y = mx + b. Now, we must solve for b by plugging in a point (either point can be chosen). This gives us:

y2 = mx2 + b

b = y2 - mx2
Let's look at the program:

#include <stdio.h>

int main() {

 double x1, y1, x2, y2;

 printf("Enter the coordinates of the first point.\n");

 scanf("%lf%lf", &x1, &y1);

 printf("Enter the coordinates of the second point.\n");

 scanf("%lf%lf", &x2, &y2);

 if (x1 == x2 && y1 == y2) {

 printf("Those points don't define a line.\n");

 }

 else if (x1 == x2) {

 printf("Your line is x = %lf.\n", x1);

 }

 else {

 double slope = (y2 - y1)/(x2 - x1);

 double b = y2 - slope*x2;

 printf("Your line is y = %lfx + %lf.\n", slope, b);

 }

 return 0;

}

Nested if statements
It is possible to put if statements inside of any clause of another if statement because after all, the if statement is just another regular statement in the C language. Typically, the term used to describe the situation where a particular type of statement is inside of the same type of statement is "nested."

If you ever find yourself writing code inside of an if clause and realize that you need to make another choice, then it's perfectly valid to write another if statement.

Consider the problem of determining whether or not a year is a leap year. The actual definition is as follows:
1) Must be divisible by 4.

2) Years divisible by 100 are not leap years unless they are also divisible by 400.

Thus, 1600, 1752, 1984, and 2000 were leap years, but 1783 and 1900 were not.

We will first split our logic into two cases:

1) Years divisible by 4

2) Years not divisible by 4

Then, we can split the years divisible by 4 into three cases:

1) Years not divisible by 100 (leap years)

2) Years divisible by 400 (leap years)

3) Years divisible by 100, but not 400 (not leap years)

#include <stdio.h>

int main() {

 int year;

 int is_leap_year;

 printf("Enter the year.\n");

 scanf("%d", &year);

 if (year%4 == 0) {

 if (year%100 != 0) {

 is_leap_year = 1;

 }

 else if (year%400 == 0) {

 is_leap_year = 1;

 }

 else {

 is_leap_year = 0;

 }

 }

 else {

 is_leap_year = 0;

 }

 if (is_leap_year) {

 printf("%d is a leap year.\n", year);

 }

 else {

 printf("%d is NOT a leap year.\n", year);

 }

 return 0;

}
One thing to notice in this solution is the user of the variable is_leap_year. It's set to 1 if the year is a leap year and 0 if it is not. Remember that 1 stands for true and 0 for false. Essentially, we are using is_leap_year like a flag, just like we previously used DEBUG as a flag. In this instance though, is_leap_year is a variable that potentially changes in the middle of the program running, whereas DEBUG was constant throughout a single run of the program it was in.
