Arithmetic Expressions in C

Arithmetic expressions have numbers and variables combined with the regular numeric operators (+ , - , *, /) and simplify to a single number. Here is an example of an arithmetic expression with no variables:

3.14*10*10

This expression evaluates to 314, the approximate area of a circle with radius 10. Similarly, the expression

3.14*radius*radius

would also evaluate to 314, if the variable radius stored the value 10.
Arithmetic expressions can have parentheses, just like regular mathematical expressions. Just like in regular math, in the C language, parentheses force the evaluation of what’s inside the parentheses first. For example,

(3 + 4)*5

equals 35 because we must first add 3 and 4 before multiplying by 5.

If we omit parentheses, then order of operations is used, just as they are defined in regular mathematics.

For example,

3 + 4*5

equals 23, because multiplication has a higher order of precedence than addition. This means we multiply 4 and 5 first to get 20 before we add 3 to 20.

Multiplication and division have higher precedence than addition and multiplication.

The actual precedence chart in the C language is quite large (it has about 16 different levels), but this is the one that’s most worth memorizing. By default, one should add parentheses to be sure that an expression is being evaluated the way they want it to be.

Let’s try this example:
3 + 4*5 - 6/3*4/8 + 2*6 - 4*3*2

First go through and do all the multiplications and divisions:

3 + 20 - 1 + 12 - 24

Now, do all the additions and subtractions, left to right:

10

Integer Division

The one operation that may not work exactly as you might imagine in C is division. When two integers are divided, the C compiler will always make the answer evaluate to another integer. In particular, if the division has a leftover remainder or fraction, this is simply discarded. For example:

13/4 evaluates to 3

19/3 evaluates to 6 but

Similarly if you have an expression with integer variables part of a division, this evaluates to an integer as well. For example, in this segment of code, y gets set to 2.

int x = 8;

int y = x/3;

However, if we did the following,

double x = 8;

double y = x/3;

y would equal 2.66666666 (approximately).

The way C decides whether it will do an integer division (as in the first example), or a real number division (as in the second example), is based on the TYPE of the operands. If both operands are ints, an integer division is done. If either operand is a float or a double, then a real division is done. The compiler will treat constants without the decimal point as integers, and constants with the decimal point as a float. Thus, the expressions 13/4 and 13/4.0 will evaluate to 3 and 3.25 respectively.
One of the key issues that arises with division is if the user wants a real number division, but the way code is written an integer division is being done of vice versa. So, it’s important to know how to change the type of division the computer is doing.

One way to change an integer division to a real number division is a cast. Consider the following assignment statement:

answer = x/y;

Let’s assume that answer is of type double, but x and y are of type int. This will do an integer division and then store that integer into answer as a double. (So, the fractional part will still be missing.)

To fix this, do the following:

answer = (double)x/y;

Putting the key word double in parentheses before a variable or expression makes that variable/expression act like a double. Note that it does NOT change x to a double, but simply makes x act like a double for the purposes of the division. The real number division is done and the accurate answer is stored in answer.

Now, consider the opposite situation, where x and y are doubles and answer is an integer. The code as written works, but the following fix is better form:

answer = (int)x/y;

Alternatively, if we have regular numbers in the expression, changing those numbers to have decimals will force a real number division.

Consider the following program that illustrates the difference between integer and real number division:

#include <stdio.h>

int main(void) {

 int grade1 = 75;

 int grade2 = 80;

 // Calculate the average in 8 separate ways.

 int average1 = (grade1+grade2)/2;

 int average2 = grade1 + grade2/2;

 int average3 = grade2 + grade1/2;

 double average4 = (grade1+grade2)/2;

 double average5 = (double)(grade1+grade2)/2;

 double average6 = (grade1+grade2)/2.0;

 double average7 = (double)((grade1+grade2)/2);

 int average8 = (grade1+grade2)/2.0;

 // Print out the result of each.

 printf("Ave #1 = %d\n", average1);

 printf("Ave #2 = %d\n", average2);

 printf("Ave #3 = %d\n", average3);

 printf("Ave #4 = %lf\n", average4);

 printf("Ave #5 = %lf\n", average5);

 printf("Ave #6 = %lf\n", average6);

 printf("Ave #7 = %lf\n", average7);

 printf("Ave #8 = %d\n", average8);

 return 0;

}

The first issue with the first three averages is that they are all being stored in integers, so it’s impossible they’ll be stored correctly. Secondly, the first one calculates an integer since it divides two integers. The second and the third omit parentheses which simply work incorrectly, since the sum isn’t divided by two in either.
The problem with the fourth one is that an integer division is executed. Before we ever get to store the answer into the variable answer4, we’ve already lost the .5 in the real average.

Average 5 actually works because of the case. Average 6 works because we are dividing by a double, 2.0.

Average 7 does not work because we do an integer division before we do the cast. The integer division gives us 77 and casting gives us 77.0, which is incorrect.

Average 8 doesn’t work because we are attempting to store 77.5 in an integer. When we try to do this, the integer 77 gets stored in average8 instead. Essentially, the fractional part gets dropped.

This example illustrates that one must pay careful attention to every division and must purposefully make sure that the correct one gets done.

The mod operator (%)

The one new operator is the mod operator, which is denoted by the percent sign(%). This operator is ONLY defined for integer operands. It is defined as follows:

a%b evaluates to the remainder of a divided by b. For example,

12%5 = 2 (5 goes into 12 twice, leaving 2 leftover)
19%6 = 1 (6 goes into 19 three times, leaving 1 leftover)
14%7 = 0 (7 goes into 14 twice, leaving 0 leftover)
19%200 = 19 (200 goes into 19 zero times, leaving 19 leftover)
The precedence of the mod operator is the same as the precedence of multiplication and division.

Though it may not seem like mod or integer division are useful at all, they come in handy in many situations.

Consider converting someone’s height from inches to feet and inches. For example, if someone is 68 inches tall, that is the same as 5 feet and 8 inches. To obtain this, we divde 68 by 12 to get 5, using integer division, and we compute 68%12 to get the leftover 8 inches. If you think about it, it makes perfect sense. The integer division represents the number of full feet tall someone is. The mod represents those leftover inches no accounted for in the five feet. Here is a program that does the conversion in general:

#include <stdio.h>

int main() {

 int height, feet, inches;

 printf("Enter your height in inches.\n");

 scanf("%d", &height);

 feet = height/12;

 inches = height%12;

 printf("You’re %d ft. %d in. tall.\n", feet, inches);

 return 0;

}
As this example shows, integer division and mod go hand in hand. One tells you how many full times one quantity goes in another, the other tells you what you have leftover, when you do the division.

Numerically, mod can be used to tell if a number is even or odd, and it can be used to isolate the units digit of a number.

If you carefully think about even and odd numbers, their difference is the remainder they leave when divided by 2. Even numbers leave a remainder of 0 and odd numbers leave a remainder of 1.

Using this information, we can create a program that takes an integer as input from the user and determines if it’s even or odd:

#include <stdio.h>

int main() {

 int number, odd;

 printf("Enter a non-negative integer.\n");

 scanf("%d", &number);

 odd = number%2;

 printf("odd is %d\n", odd);

 printf("If this is 0, the number was even.\n");

 printf("Otherwise the number was odd.\n");

 return 0;

}
When we learn if statements, we can rewrite this program so that it prints two different messages based on whether the number is even or odd.

In this last program, we’ll ask the user to enter a number and we’ll figure out what the last digit is. The key is that when we divide a number by 10, the leftover IS the last digit!

#include <stdio.h>

int main() {

 int number, digit;

 printf("Enter a non-negative integer.\n");

 scanf("%d", &number);

 digit = number%10;

 // Print this out.

 printf("The last digit of %d is %d.\n", number, digit);

 return 0;

}

