Use of scanf

Our program that prints out the number of feet we’ve run would be much more fun if it could ask the user to enter a number for the miles they’ve run instead of using 3 every time. In order to retrieve information from the user, we will use the C function, scanf.

When you read in information from the keyboard, you MUST read it into a variable. In particular, you must read it into the address of the variable. (This is where the variable is stored in memory.)

In order to do this, you must specify the type of information being read in, and the name of the variable you want the information read into. Notice the use of the percent code (same as in printf) in the example below to specify the type read in. For example, the following line would read in an integer into the variable number (assuming it is already declared as an integer):

scanf("%d", &number);

The & in front of number means "address of." This simply says to store whatever the user enters into the memory address where number is stored. Leaving out the & will cause your program to work incorrectly! For now, just always put the & in front of the variable in a scanf. Also, make sure to put the proper percent code of the variable you are reading into and don’t confuse % with &.
You may also read in multiple pieces of information at once. The following line reads in the month and day of birth into the integer variables month and day, (assuming they are already declared.)

scanf("%d%d", &month, &day);

When the user enters this information, they must separate what they enter with a space. Let's use the added feature of being able to read in information from the user to edit our third program:

/* Arup Guha
   Running Program Edit

   9/23/2011
   Asks the user for how long they ran in miles and

   outputs the result in feet.

*/

#include <stdio.h>

const int FEET_IN_MILE = 5280;

int main(void) {
    int miles_run, feet_run;
    printf(“How many miles did you run?\n”);

    scanf(“%d”, &miles_run);

    feet_run = miles_run*FEET_IN_MILE;
    printf("You ran %d feet.\n", feet_run);

    return 0;

}
After the variables are declared, the printf will print a message to the user. From this point, the scanf statement will WAIT until the user enters some information and hits enter. After this is done, the value entered by the user will be stored in the variable miles_run.

Note: If the user doesn't enter the proper type of information, then the behavior of the scanf may not be as intended. A good exercise would be to try running a program that is expecting an integer input and actually enter a floating point number or a string and see what happens. For our purposes, simply assume the user always enters the correct type of information.
Let's say that the user entered 4, now our picture looks like:

miles_run
feet_run

	4
	


Next, the assignment statement runs. This computes 4*5280 to get 21120 and then stores that value into the variable feet_run, which then gets printed.
miles_run
feet_run

	4
	21120


Program Example: Age

Here is another program that illustrates the use of the assignment statement. Though the computation here isn’t difficult, students often get confused with the contradictory sounding statement

age = age + 1;
// Arup Guha

// Age Program

// 9/24/2011

// This program illustrates incrementing a variable.

#include <stdio.h>

int main() {

    int age;
    printf("How old are you?\n");

    scanf("%d", &age);

    printf("You are %d years old.\n", age);

    age = age + 1;

    printf("Next year you will be %d years old.\n", age);

    return 0;

}
After the program begins, imagine that someone enters 15, when prompted to enter their age. The picture of the computer’s memory is as follows:

age 

	15


Now, let’s consider the line
age = age + 1;
We are first supposed to evaluate the right hand side of this assignment statement. The variable age is 15, so age+1 is equal to 16.

The next step is that we’re supposed to change the variable on the left to the value we just calculated. Thus, we must change age to 16:

age 

	16


Using Programs to Solve Problems
Now that we can read in information from the user, we can write programs that solve problems for the user. Consider working a part-time babysitting job where you get paid by the hour. Depending on who you are babysitting for, the two following quantities might differ:

a) The number of hours you work

b) How much money you get paid per hour.

Let’s write a program that calculates how much money you will earn for a babysitting job. 

First we will create variables to store the number of hours worked (integer) and the amount of money in dollars you earn per hour (double).

Then we will ask the user to enter both of these values. Finally, we’ll multiply these two variables to obtain the total amount earned and output this to the screen.

// Arup Guha

// Babysitting Calculator

// 9/24/2011

// This program calculates the money earned babysitting.

#include <stdio.h>

int main() {

    int hours_worked;

    double hourly_pay;

    // Get the user input.

    printf("How many hours did you babysit?\n");

    scanf("%d", &hours_worked);

    printf("How much did you get paid per hour?\n");

    scanf("%lf", &hourly_pay);

    // Calculate the total pay and print out.

    double total_pay = hourly_pay*hours_worked;

    printf("You’ll make $%lf total.\n", total_pay);

    return 0;

}
In the situation where the user has entered 5 for hours worked and 7.50 for their hourly pay, the variables, after the second scanf would store the following:

hours_worked
    hourly_pay

	5
	7.50


When we get to the following assignment statement, we create a new variable total_pay, and in it we will store the result of multiplying hours_worked and hourly_pay, which is 37.50:

hours_worked
    hourly_pay    total_pay

	5
	7.50
	37.50


You’ll notice when we run this program, it prints out the following (if we enter 5 and 7.50, respectively):

You’ll make $37.500000 total.

Clearly, when we’re dealing with money, we’d prefer to print out two digits after the decimal. In order to do this, we must change the format code slightly:

printf("You’ll make $%.2lf total.\n", total_pay);
The .2 after the % and before the lf indicate to print out two digits after the decimal. Whatever number after the . will indicate the number of digits that will print out after the decimal.

With this change, the output of the program becomes:

You’ll make $37.50 total.

A common pitfall that beginning students make with programs like this is that they don’t pay attention to the order of execution. Namely, they write down all the correct statements, but they don’t write them in the correct order. Consider the following (incorrect) version of the babysitting program:
// Arup Guha

// Babysitting Calculator

// 9/24/2011

// This program calculates the money earned babysitting.

#include <stdio.h>

int main() {

    int hours_worked;

    double hourly_pay;

    double total_pay = hourly_pay*hours_worked;

    // Get the user input.

    printf("How many hours did you babysit?\n");

    scanf("%d", &hours_worked);

    printf("How much did you get paid per hour?\n");

    scanf("%lf", &hourly_pay);

    // Print out the total pay.

    printf("You'll make $%lf total.\n", total_pay);

    return 0;

}
The issue here is that at the point in time we have the assignment statement, the values of hourly_pay and hours_worked are uninitialized. They could be anything because we haven’t yet given them a value.

Thus, two unknown numbers get multiplied and that result gets stored in total_pay. On some compilers, the hours_worked and hourly_pay will be set to random values. On other systems, they will be set to 0. Either way, the result that gets printed will be incorrect. It’s very important to make sure that all the variables you use on the right hand side of an assignment statement have already been given values.
Program Edit

Now, let’s add one step to our program. Let’s say that you owe your mother a certain amount of money. So now, we will assume that you immediately pay your mother back. Then, we want to know how much money we have left. (For now, let’s assume you owe your mother less than you get paid for the babysitting job.)

We’ll add these two parts to the end of our previous program:

// Arup Guha

// Babysitting Calculator

// 9/24/2011

// This program calculates the money earned babysitting.

#include <stdio.h>

int main() {

    int hours_worked;

    double hourly_pay;

    // Get the user input.

    printf("How many hours did you babysit?\n");

    scanf("%d", &hours_worked);

    printf("How much did you get paid per hour?\n");

    scanf("%lf", &hourly_pay);

    // Calculate the total pay and print out.

    double total_pay = hourly_pay*hours_worked;

    printf("You'll make $%.2lf total.\n", total_pay);

    // Get how much you owe.

    double money_owed;

    printf("How much money do you owe your mother?\n");

    scanf("%lf", &money_owed);

    // Subtract this out and print out the money left.

    total_pay = total_pay - money_owed;

    printf("After paying back your mother, ");

    printf("you have $%.2lf.\n", total_pay);

    return 0;

}
Notice that the order of the statements is very important and that we were able to change the value of the variable total_pay to adjust it for the amount of money owed.
Programming Style

Programming style refers to how you lay out your code. Although we haven't seen too many C constructs, it is instructive to list a few of the common elements of programming style:

1) Include ample white space in your code so it is easy to read. This means insert blank lines in between logically separate segments of code.
2) Indent all code in between corresponding curly braces {}. Right now, this means indent each statement inside of main, preferably by 4 spaces. Later, this will get a bit more complicated.
3) Use a header comment that specifies the author's name, the date, and a brief description of the program.

4) Comment each major block of code with a quick description of the function of the block of code.

5) Give your variables meaningful names so that it is easy to determine what information they are intended to store.

6) Use constants (const) when appropriate and have them as all capital letters.

7) Be consistent with your style.

Common Programming Errors

1) Using the statements we have discussed so far, probably the most common error is:

Unterminated string or character constant

This means that you have forgotten a close quote to match an open quote.

2) Another very common error for a beginning programmer is forgetting the semicolon at the end of a statement. This seemingly easy error produces a surprisingly varied set of compiler error messages. The reason for this is that the compiler thinks that the current statement is continuing.

3) Mismatching percent codes typically causes vastly incorrect values to print out. If your program runs, but prints out a vastly different answer than you expect, double check all of your percent codes.
4) Forgetting the & when reading in a value into a variable. The compiler doesn't catch this error, and instead your program will most likely crash. (This means your program will terminate without finishing the rest of the instructions it has.)
Types of Errors

1) Compile-Time Error: This is when your program doesn't use the proper syntax and does not compile. Your compiler will give you an error message and you won’t be able to even run the program.
2) Run-Time Error: Your program compiles, but when it runs, in certain cases it terminates abruptly. An example of this would be a program that attempted to divide by zero while running, or missing an & in a scanf.
3) Logical Error: Your program compiles and executes without abnormal termination, but does not always produce the desired results.

