
Sample Questions: Code Run Time Analysis 

 

August 2015 Computer Science A Question 2 (Iterative Code Segment) 

Consider the following segment of code, assuming that n has been previously declared and 

initialized to some positive value: 
 

int i, j, k; 

for (i = 1; i <= n; i++){ 

    for(k =1; k <= i; k++){ 

        j = k; 

        while(j > 0) 

            j--; 

    } 

} 

  

(a) (3 pts) Write a summation (3 nested sums) equal to the number of times the statement j--; 

executes, in terms of n. 
 

(b) (7 pts) Determine a closed form solution for the summation above in terms of n. 

 

 

 

 

December 2014 Computer Science A Question 2a (Iterative Code Segment) 

Write a summation, but do NOT solve it, that represents the value of the variable sum at the end 

of the following code segment, in terms of the variable n, entered by the user. (Note: your answer 

should have two summation signs in it and appropriate parentheses that clearly dictate the meaning 

of the expression you’ve written.) 

 
int i, j, n, sum = 0; 

printf("Please enter a positive integer.\n"); 

scanf("%d", &n); 

 

for (i=n; i<2*n; i++) { 

    sum += i; 

    for (j=1; j<=i; j++) 

        sum += (j*j); 

} 

 

 

  



August 2014 Computer Science A Question 2b (Iterative Code Segment) 

Determine the run time of the code segment shown below, in terms of n. Provide your answer as a 

Big-Theta bound. 

 
int n; 

scanf("%d", &n); 

int i, step = 1, total = 1; 

 

for (i=0; i<n*n; i+= step) { 

    total++; 

    step += 2; 

} 

 

December 2013 Computer Science A Question 2ab (Iterative Code Segment) 

(a) (3 pts) Write a summation that represents the number of times the statement p++ is executed 

in the following function: 

 
int foo(int n) 

{ 

   int i, j, p = 0; 

 
   for (i = 1; i < n; i++) 

      for (j = i; j <= i + 10; j++) 

         p++; 

 
   return p; 

} 

 

(b) (5 pts) Determine a simplified, closed-form solution for your summation from part (a), in terms 

of n. You MUST show your work. 
 

August 2012 Computer Science B Question 1a (Iterative Code Segment) 

 (a) (4 pts) Determine, with proof, the run-time of the following function in terms of the formal 

parameters a and b: 

 
int f(int a, int b) { 

    int i,j, sum = 0; 

 

    for (i=0; i<a; i++) { 

        j = b; 

        while (j > 0) { 

            j = j/2; 

            sum++; 

        } 

    } 

    return sum; 

} 



August 2015 Computer Science B Question 1 (Recursive Code Segment) 

Consider the recursive function diminish shown below: 
  

double diminish(int m, int n){ 

    if (n == 0) 

        return m; 

    return  1.0/2*diminish(m,n-1) 

} 

 

(a) (3 pts) Let T(n) represent the run time of the function diminish. Write a recurrence relation 

that T(n) satisfies. 

 

(b) (6 pts) Using the iteration method, determine a closed-form solution (Big-Oh bound) for 

T(n). 

 

 

May 2014 Computer Science A Question 2 (Recursive Code Segment) 
Write a recurrence relation that represents the runtime of the following function, then solve it (i.e., 

derive its closed form) using iterative substitution: 

 
   int foo(int n) 

   { 

      if (n == 0 || n == 1) 

         return 18; 

 

      else 

         return foo(n-2) + foo(n-2); 

    } 

 

 

 



Recurrence Relations to Solve 

 

1) 𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 1, 𝑇(1) − 1 

 

2) 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑛, 𝑇(1) = 1 

 

3) 𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑛, 𝑇(1) = 1 

 

4) 𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛, 𝑇(1) = 1 

 

Solution to #1 using iteration technique 

 

Original equation: 𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 1 

Plugging in for 
𝑛

2
, we get 𝑇 (

𝑛

2
) = 2𝑇 (

𝑛

2

2
) + 1 = 2𝑇 (

𝑛

4
) + 1 

Similarly, we find: 

 

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 1 

= 2 (2𝑇 (
𝑛

4
) + 1) + 1 

= 4𝑇 (
𝑛

4
) + 2 + 1 

= 4𝑇 (
𝑛

4
) + 3 

 

Repeat, plugging in  𝑇 (
𝑛

4
): 

= 4 (2𝑇 (
𝑛

8
) + 1) + 3 

= 8𝑇 (
𝑛

8
) + 4 + 3 

= 8𝑇 (
𝑛

8
) + 7 

 

In general, after k steps, we get: 

 

𝑇(𝑛) = 2𝑘𝑇 (
𝑛

2𝑘
) + (2𝑘 − 1) 

 

If we let 2𝑘 = 𝑛 (so that 𝑘 = 𝑙𝑜𝑔2𝑛), we get 

 

𝑇(𝑛) = 𝑛𝑇 (
𝑛

𝑛
) + (𝑛 − 1) = 𝑛(1) + (𝑛 − 1) = 2𝑛 − 1 = 𝑂(𝑛) 

 

Yielding the Big-Oh bound of the recurrence relation. 


