
Page 1 of 15

Computer Science Foundation Exam

December 14, 2012

Section I A

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Question # Max Pts Category Passing Score

1 11 DSN 7

2 10 ANL 7

3 10 ALG 7

4 9 ALG 6

5 10 ALG 7

TOTAL 50

 You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and

not graded based on the answer alone. Credit cannot be given unless all work

is shown and is readable. Be complete, yet concise, and above all be neat.

Fall 2012 Computer Science Exam, Part A

Page 2 of 15

1) (11 pts) DSN (Recursion)

Write a recursive function that takes in a linked list and returns a pointer to the node with the

highest value. Head, representing the head of the list, and max, representing the current maximal

node, are parameters to the function. Your function should make use of the following struct

node and function prototype:

struct node {

 int data;

 struct node *next;

};

struct node * maxNode(struct node * head, struct node * max) {

}

Fall 2012 Computer Science Exam, Part A

Page 3 of 15

2) (10 pts) ANL (Summations)

Determine a simplified, closed-form solution for the following summation in terms of n. You

MUST show your work.

∑(𝟑𝒌+ 𝟒)

𝒏+𝟑

𝒌=𝟓

Fall 2012 Computer Science Exam, Part A

Page 4 of 15

3) (10 pts) Stack Applications.

Convert the following infix expression to postfix. Show the contents of the stack at the indicated

points (1, 2, and 3) in the infix expression.

 1 2 3

 A + B * C / ((D + E) + F * G)

 1 2 3

Resulting postfix expression:

Fall 2012 Computer Science Exam, Part A

Page 5 of 15

4) (9 pts) ALG (Binary Trees)

Give the preorder, inorder, and postorder traversals of the binary tree shown above.

Preorder:

Inorder:

Postorder

55

72

53

23

63

2

68

10

26

11

35

8

86

8

41

Fall 2012 Computer Science Exam, Part A

Page 6 of 15

5) (10 pts) ALG (AVL Trees)

Draw the resulting AVL tree after inserting the following items (in this order) into an initially

empty AVL tree: 67, 24, 60, 72, 32, 26, 49. Show the tree after each step that requires a

rebalance. (There are 2 of these steps) Show the final tree after all items have been added.

Fall 2012 Computer Science Exam, Part A

Page 7 of 15

Computer Science Foundation Exam

 December 14, 2012

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name:

PID:

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 DSN 7

3 10 DSN 7

4 10 ALG 7

5 10 ALG 7

TOTAL 50

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and

not graded based on the answer alone. Credit cannot be given unless all work

is shown and is readable. Be complete, yet concise, and above all be neat.

Fall 2012 Computer Science Exam, Part A

Page 8 of 15

1) (10 pts) ANL (Algorithm Analysis)

(a) (6 pts) List the best case, worst case and average case run-times of each of the following

algorithms/operations in terms of their input size, n:

 (i) Inserting an item into a Linked List of n elements

 best case: __________ average case: __________ worst case:

 (ii) A Quick Sort of n elements

 best case: __________ average case: __________ worst case:

 (iii) Searching for an element in a binary tree

 best case: __________ average case: __________ worst case:

(b) (4 pts) Consider the recurrence relation T(n) = T(n-1) + n2n, for n > 1 and T(1) = 2. Rewrite

the value of T(n) utilizing a summation so T(n) is expressed without any reference to T(x), for

any value x. Please leave your final answer as a summation and DO NOT ATTEMPT to

solve the sum.

Fall 2012 Computer Science Exam, Part A

Page 9 of 15

Fall 2012 Computer Science Exam, Part A

Page 10 of 15

2) (10 pts) DSN (Recursive Algorithms – Binary Trees)

Write a recursive function that will return the number of nodes in a binary tree that contain a

particular value. Your function will take in a pointer to the root of the binary tree as well as the

value for which to search. The prototype for the function and the binary tree struct are given to

you below. Complete the function.

struct treeNode {

 int data;

 struct treeNode *left;

 struct treeNode *right;

};

int numOccurrences(struct treeNode* root, int value) {

Fall 2012 Computer Science Exam, Part A

Page 11 of 15

}

Fall 2012 Computer Science Exam, Part A

Page 12 of 15

3) (10 pts) DSN (Linked Lists)

Imagine using a linked list to store a large integer. In particular, each node of the linked list

stores a single digit with the least significant digit being stored first. For example, the number

1387 would be stored in a linked list of length four storing the digits 7, 8, 3, and 1, respectively.

Complete the function below that compares to large integers stored in this fashion. In particular,

if the first number is strictly less than the second number, return -1. If they are equal, return 0,

Otherwise, return 1. Although it’s not a requirement, it’s probably easiest to write this function

recursively. Use the struct and function prototype provided below.

struct node {

 int data;

 struct node *next;

};

int intcmp(struct node *ptrA, struct node* ptrB) {

Fall 2012 Computer Science Exam, Part A

Page 13 of 15

}

4) (10 pts) ALG (Tracing) Consider the following function:

int f(int array[], int length, int target) {

 int i=0, j=0, sum=0, cnt=0;

 while (j < length) {

 if (sum < target) {

 sum += array[j];

 j++;

 }

 else if (sum > target) {

 sum -= array[i];

 i++;

 }

 else {

 cnt++;

 sum -= array[i];

 i++;

 }

 }

 if (sum == target) cnt++;

 return cnt;

}

(a) (3 pts) If array stores the elements 2, 3, 3, 2, 5, 4, 1, 3, 6, 8, 2, 3, 4, 4, 2, 2, what would the

return value of the function call f(array, 16, 8) be?

(b) (4 pts) Give a concise description of what f1 calculates.

(c) (3 pts) Let n be the length of the input array to f. What is the run time of f in terms of n?

Fall 2012 Computer Science Exam, Part A

Page 14 of 15

Fall 2012 Computer Science Exam, Part A

Page 15 of 15

5) (10 pts) ALG (Sorting)

(a) (4 pts) Consider running a Merge Sort on the array below. What would the contents of the

array be right BEFORE the last Merge operation?

Index 0 1 2 3 4 5 6 7

Values 13 2 8 7 14 6 19 1

Index 0 1 2 3 4 5 6 7

Values

(b) (3 pts) Consider running an insertion sort on the array below. How many swaps would be

performed total while the algorithm ran?

Index 0 1 2 3 4 5 6 7

Values 13 2 8 7 14 6 19 1

(c) (3 pts) Given the array below, which element, 8 or 83 would be a better pivot element for

running the Partition in Quick Sort? Why? (Note: By better pivot element, we mean a choice of

pivot that’s likely to reduce the run time of the algorithm.)

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Values 13 2 8 7 14 6 19 1 99 5 57 44 3 31 83

