
Foundation Exam Structure (January 2022 – beyond)

Section A: Basic Data Structures

 1. Dynamic Memory Management in C - Tracing/Coding

 i. Dynamically allocating memory for a struct

 ii. Dynamically allocating memory for an array

 iii. Dynamically allocating memory for a 2D array

 iv. Dynamically allocating memory for an array of

 arrays.

 v. Solving problems with arrays.

 vi. Freeing memory in all cases

 2. Linked Lists – Tracing/Coding

 i. How to allocate space for a new node (malloc)

 ii. When to check for NULL

 iii. What free does

 iv. Iteration vs. Recursion

 v. Insertion

 vi. Deletion

 vii. Structural Modification

 3. Abstract Data Structures – Tracing/Coding

 i. Stacks

a. Converting infix to postfix expressions

b. Evaluating postfix expressions

c. Array Implementation

d. Linked List Implementation

 ii. Queues

a. Array Implementation

b. Linked List Implementation

Section B: Advanced Data Structures

 1. Binary Trees – Tracing/Coding

 i. How to allocate space for a new node (malloc)

 ii. When to check for NULL

 ii. Tree Traversals

 iii. What free does

 iv. Using recursion with trees

 v. Computing sum of nodes

 vi. Computing height

 vii. Other variants

 2. Advanced Data Structures - Tracing/Coding

 i. Hash Tables

a. Hash Function Properties

b. Linear Probing Strategy

c. Quadratic Probing Strategy

d. Separate Chaining Hashing

 ii. Binary Heaps

a. Insertion

b. Delete Min/Max

 3. Advanced Tree Structures

 i. AVL Trees

 a. Tracing inserts

 b. Tracing deletes

 c. Searching for a value

 ii. Tries

 a. Tracing inserts

 b. Searching for a word

Section C: Algorithm Analysis

 1. Algorithm Analysis

 i. Known Data Structures

 ii. Best, Average, Worst Cases

 iii. Based on various implementations

 iv. New Problem Analysis

 2. Timing questions

 i. Set up correctly with an unknown constant

 ii. Solve for the constant.

 iii. Use direct formula to answer the question

 iv. For loop questions, write out summations

 3. Summations and Recurrence Relations

 i. Break them down into multiple summations if

 necessary

 ii. Evaluate each of those using summation

 formulas.

 iii. Remember that indices of summation are

 important.

 iv. The n in the formula is JUST a variable!!!

 v. Deriving recurrence relation from code

 vi. Using iteration to solve recurrence relations

Section D: Algorithms

 1. Recursive Coding

 i. Need a terminating condition

 ii. Need an algorithm for non-terminating case.

 iii. In particular, you must reduce a question to

 “smaller” instances of the same question.

 iv. Do not try to think of an iterative solution!!!

 v. Towers of Hanoi solution and recursion

 vi. Permutation

 vii. Floodfill

 2. Sorting

 i. Insertion Sort

 ii. Selection Sort

 iii. Bubble Sort

 iv. Merge Sort (Merge)

 v. Quick Sort (Partition)

 3. Base Conversion and Bitwise Operators

 i. Base Conversion

 a. Converting from base b to base 10.

 b. Converting from base 10 to base b.

 c. Converting between bases 2, 4, 8, 16 through base 2.

 ii. Bitwise Operators to express subsets

 a. Mechanics of &, |, ^, >>, <<.

 b. Corresponding "set" meanings.

 c. How to check if a bit is "on" or "off" in a number.

