6.5 The Knapsack Problem

Definition:

We are given n objects and a knapsack. For i = 1, 2, …, n object i has a positive weight wi and a positive value vi. The knapsack can carry a weight not exceeding W. Our aim is to fill the knapsack in a way that maximizes the value of the included objects, while not violating the capacity constant. This version of problem allows the objects broken into smaller sizes and rather easier than the other version which does not allow. That is we may put only a fraction xi of the ith object into the knapsack where 0 <= xi <= 1. In mathematical terms problem is as follows:

Maximize ∑ni=1 xivi subject to ∑ni=1 xiwi <= W, where vi > 0, wi > 0, and 0 <= xi <= 1 for 1 <= i <= n.
Algorithm:

We can assume that any interesting instance of the problem    ∑ni=1 wi > W. It is also clear that an optimal solution must fill the knapsack exactly, for otherwise we could add a fraction of one of the remaining objects and increase the values of the load. Here is the algorithm:

function knapsack (w[1..n], v[1..n], W): array[1..n]

     {initialization}

     for i=1 to n do x[i] = 0

     weight = 0

     {greedy loop}

     while weight < W do

          i = best remaining object {see below}

          if weight + w[i] <= W then x[i] = 1

                                                       weight = weight + w[i]

                                               else x[i] = (W – weight)/w[i]

                                                       weight = W

     return x
The key point in this algorithm is choosing the best remaining object. We have three alternative ways to do this: choosing the most valuable remaining object, choosing the lightest remaining object or choosing the object whose value per unit weight is as high as possible. Let’s see which one works best with an example. Assume we have the following values:
n = 5, W = 100

	w
	10
	20
	30
	40
	50

	v
	20
	30
	66
	40
	60

	v/w
	2.0
	1.5
	2.2
	1.0
	1.2


If we select objects in order of decreasing value our total is: 66 + 60 + 40/2 = 146
If we select objects in order of increasing weight our total is: 20 + 30 + 66 + 40 = 156

If we select objects in order of decreasing vi/wi total is: 20 + 30 + 66 + 0.8x60 = 164

This example shows that the solution obtained by a greedy algorithm that maximizes the value per unit, is better than other greedy approaches. Indeed this is the optimal solution. Let’s see its proof.
Theorem 6.5.1: If objects are selected in order of decreasing vi/wi, then algorithm knapsack finds an optimal solution.

Proof:
Suppose without loss of generality that the available objects are numbered in order of decreasing value per unit weight, that is, that

v1/w1 >= v2/w2 >= ... >= vn/wn.

Let X = (x1, ..., xn) be the solution found by the greedy algorithm. If the all xi are equal to 1, this solution is clearly optimal. Otherwise, let j be the smallest index such that xj < 1. Looking at the way the algorithm works, it is clear that xi = 1 when i < j, that xi = 0 when i > j and that ∑ni=1 xiwi = W. Let the value of the solution Y be V(X) = ∑ni=1 xivi.
Now let Y = (y1, ..., yn) be any feasible solution. Since Y is feasible, ∑ni=1 yiwi <= W, and hence ∑ni=1 (xi – yi)wi >= 0. Let the value of the solution Y be V(Y) = ∑ni=1 yiwi = W. Now:

V(X) – V(Y) = ∑ni=1 (xi – yi)vi  = ∑ni=1 (xi – yi)wivi/wi.

When i < j, xi = 1 and so xi – yi is positive or zero, while vi/wi >= vj/wj; when i > j, xi=0 and so xi - yi is negative or zero, while vi/wi <= vj/wj; and of course when i = j, vi/wi = vj/wj. Thus in every case (xi-yi)(vi-wi) >= (xi-yi)(vj/wj).
Hence:

V(X) – V(Y) >= (vj/wj) ∑ni=1 (xi – yi)wi >= 0.

We have thus proved that no feasible solution can have a value greater than V(X), so the solution X is optimal.

Complexity Analysis:
Sorting the object takes O(nlogn) time (i.e. heap sort) and the greedy loops runs in O(n) time. Therefore this algorithm runs in O(nlogn) time.






