Design and Analysis of Algorithms.
Dr. Arup Guha.
The World Series Problem.
24th October, 2003.
World Series:
The World Series problem can be formulated as follows.

· There is a competition involving 2 teams ‘A’ and ‘B’.

· They play a total of 2n-1 games. The first team that wins the ‘n’ matches is declared the overall winner of the competition.

The following assumptions are made in the set up of the tournament.

· There will be no tied matches in the tournament.

· The result of each game is independent and that for any given match there is a constant probability ‘p’ that team ‘A’ wins and probability q=1-p that team ‘B’ wins.

Divide and Conquer:
Let P (i, j) be the probability that team ‘A’ shall win the tournament given that they still need ‘i ’ victories to achieve this and team ‘B’ needs ‘j’ victories. Hence at the start of the tournament the probability that ‘A’ or ‘B’ will be the overall winner is given by P (n, n).
If team ‘A’ requires 0 victories, then in essence team ‘A’ has already won the tournament and P (0, i) =1, 1≤ i ≤ n.

Similarly for team ‘B’ we have P (i,0) = 1, 1≤ i ≤ n. That is team ‘B’ has already won the tournament.

Since team ‘A’ always wins a game with probability ‘p’ and loses a game with probability ‘q’ (This is the probability of team B winning),

P (i, j) = p*P (i-1, j) + q* P (i, j-1), i ≥ 1, j ≥ 1.

Thus we see that P (i, j) can be computed by a recursive routine.

Algorithm:
Function P (i, j)

If I = =0

return 1;

else if j = = 0

return 0;

else

return (p*P (i-1, j) + q* P (i, j-1));
Time Complexity Analysis:
The pattern of recursive calls are as shown below.

[image: image1]
Let T (k) be the time needed in the worst case to calculate P (i, j). Here k=i+ j.

For the recursive routine we see that

T (k) ≤ 2T (k-1) + d, k>1.

T (1) =c.

Here c and d are constants. Constant d is the hidden constant that accounts for the extra work done.

Rewriting the T (k) recursively n terms of T (k-1), T (k-2) we have

T (k) ≤ 4T (k-2)+2d+d, k>2

…….
T (k) ≤ 2k-1 T (1) + (2k-2+2k-3+….+2+1)d

T (k) = 2k-1 c + (2k-1 – 1) d
 = 2k (c/2+d/2) – d.

Hence T (k) = O (2k). If i= j =n then T (k) = O (4n).

From the figure of the tree representing the recursive calls, it is identical to the calculation of the binomial co-efficient. To see the analogy replace P (i, j) by C(i+ j, j) and P (i-1, j) by C(i+j-1, j) and so on.

Thus we are now calculating C (i+ j, j) = C(i+ j-1,j) + C(i+ j-1,j-1) of a binomial co-efficient. Thus the total number of recursive calls is 2 (i+ j C j)-2

{(2 times i+ j choose j) -2. For further explanation see problem 8.1 on page 260}
Thus the probability P (n, n) that team ‘A’ will win at the start of the series is

“Ω (2nCn)”.

We shall assume the result (2nCn) ≥ 4n/ (2n+1). Thus combining the results we obtain the time to calculate P (n, n) is O (4n) and in Ω (4n/n).
It is seen that for large values of n the recursive algorithm is not optimal.
Dynamic Programming:
In the iterative version we adopt the method that was used for calculating the Pascal’s Triangle as done in the class. But instead of filling the array row by row as was done we go diagonal by diagonal. The modified algorithm is presented below.

Algorithm:
function series (n, p)

int P[n, n];

int p=1, q= 1;

int s;

for (s=1;s<=n; s++){

/* fill top left to diagonal*/

P [0][s]= 1;

P [s][0]= 1;

for (k=1;k<=s-1;k++){

P[k] [s-k] = p* P[k-1] [s-k] + q* P[k] [s-k-1];
}

}

for (s=1;s<=n; s++){

/* Fill from below main diagonal to bottom right*/

for (k=0;k<=n-s; k++){

P [s+ k] [n-k]= p*P[s+k-1] [n-k]+q*P[s+ k] [n-k-1];

}

}

return P [n] [n];

Time Complexity Analysis:

The program fills an array of size of n*n and assuming a constant time to fill to each entry the execution time is Ө (n2). Similar to Pascal’s Triangle calculation the function can be implemented so that Ө (n) storage space is sufficient.

Prepared and Submitted By: Mahesh Ramamurthy.
Date: October 25th, 2003
Tree of Recursive calls

