Probabilistic Algorithms – November 18, 2003
Note takers: Lucas Cipolla, Cong Truong
Algorithm to return a real random number between a and b:
function uniform(a, b)

return a + (b-a)*uniform(0,1)
The call to uniform(0,1) is not a recursive call. It returns a real random number between 0 and 1. This algorithm is an idealized algorithm and doesn’t really exist.

Approximation algorithms:
1) Buffon’s needle

· Imagine dropping a needle of length 1. The probability that it lands across one of the lines is
[image: image1.wmf]p

1

.
· Simulate dropping n needles. If k of these land across lines
[image: image2.wmf]p

1

»

n

k

. Thus,
[image: image3.wmf]k

n

»

p

 is an approximation for
[image: image4.wmf]p

.
· This algorithm is not practical, though. For four digits of precision, you would need to run 108 trials.

2) Probability two randomly chosen positive integers are relatively prime is
[image: image5.wmf]2

6

p

. If you have k successes over n trials,
[image: image6.wmf]2

6

p

»

n

k

. Thus another approximation for
[image: image7.wmf]p

is
[image: image8.wmf]p

n

6

.
3) Numerical Integration

Primality Testing
· Monte-Carlo algorithm: p-correct if it returns a correct answer with probability p or greater for each problem instance.
· Yes-biased Monte-Carlo algorithm: correct 100% of the time it answers yes, but is correct with probability p if it answers no.
· No-biased Monte-Carlo algorithm: correct 100% of the time it answers no, but is correct with probability p if it answers yes.

Background for Primality Testing
Euler

For all positive integers n:

Theorem 1.
aФ(n) ≡ 1 mod n, for all a such that gcd(a,n) = 1

· For a prime number p, Ф(p) = p – 1

· For a non prime number n, Ф(n) = n – 1

· Ф(n) = the number of values in the set {1, 2, …, n-1} that are relatively prime with n.

Testing n for primality:
Pick a random a such that 1 < a < n and check gcd(a,n) = 1.

If TRUE, calculate an-1 mod n

If n is prime, the result should be 1

Otherwise, n is composite.

However, we may still get 1 even though n is not prime. So the test is NOT PERFECT.

Miller-Robin Test (adaptation of Euler) –

A Yes-biased Monte Carlo algorithm with probability ¾ based on Theorem 1

To test for n, factor n – 1 = 2km, where m is odd and calculate X = am mod n

If X = n – 1, then n is prime, else X = X2 mod n

Go to previous step. Repeat k -1 times.

If no values of X = n -1, n is composite

Example.
n = 49

n – 1 = 48 = 24 * 3, so k =4 and m =3

Randomly pick a = 5

X = 53 mod 49 = 27, which is not n -1 (48) so continue

X = 272 = 56 mod 49 = 43

X = 432 = 512 mod 49 = 36

X = 362 = 524 mod 49 = 43

We have repeated k – 1 times (3) and all failed to equal n -1

49 is not prime

a46 ≡ 1 mod 47

a23 ≡ ±1 mod 47

-1 ≡ n – 1

(n – 1)2 ≡ 1 mod n

Test n = 15

42 ≡ 1 mod 15

42k ≡ 1 mod 47, for all k

Had 15 been prime, then 47 ≡ ±1 mod 15

Amplification Algorithm for a p-correct Monte-Carlo Algorithm

Basic Idea: Repeat the algorithm a lot (50 times)

Each time prime is returned

¾ confidence in its primality => 1 – (1/4)50

¼ fails -> to fail 50 times in a row => (1/4)50

This is still not perfect if random generator for a is bad.
Parallel lines 2 units apart

f(x)

a

b

h

h > f(x) for all a ≤ x ≤ b

The area of the box = h(b-a) and the ratio k/n can be used to estimate the area the integral of f(x) from a to b, where k is the number of random points generated inside the box and n is the total number of points.

_1130761871.unknown

_1130762711.unknown

_1130763106.unknown

_1130762561.unknown

_1130761966.unknown

_1130762423.unknown

_1130761616.unknown

