Probabilistic Algorithms – November 18, 2003
Note takers: Lucas Cipolla, Cong Truong
Algorithm to return a real random number between a and b:
function uniform(a, b)


return a + (b-a)*uniform(0,1)
The call to uniform(0,1) is not a recursive call.  It returns a real random number between 0 and 1.  This algorithm is an idealized algorithm and doesn’t really exist.

Approximation algorithms:
1) Buffon’s needle






· Imagine dropping a needle of length 1.  The probability that it lands across one of the lines is
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· Simulate dropping n needles.  If k of these land across lines
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.  Thus, 
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 is an approximation for
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· This algorithm is not practical, though.  For four digits of precision, you would need to run 108 trials.

2) Probability two randomly chosen positive integers are relatively prime is
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[image: image7.wmf]p

is 
[image: image8.wmf]p

n

6

.
3) Numerical Integration





Primality Testing
· Monte-Carlo algorithm:  p-correct if it returns a correct answer with probability p or greater for each problem instance.
· Yes-biased Monte-Carlo algorithm: correct 100% of the time it answers yes, but is correct with probability p if it answers no.
· No-biased Monte-Carlo algorithm: correct 100% of the time it answers no, but is correct with probability p if it answers yes.

Background for Primality Testing
Euler

For all positive integers n:

Theorem 1.
aФ(n) ≡ 1 mod n, for all a such that gcd(a,n) = 1

· For a prime number p, Ф(p) = p – 1

· For a non prime number n, Ф(n) = n – 1

· Ф(n) = the number of values in the set {1, 2, …, n-1} that are relatively prime with n.

Testing n for primality:
Pick a random a such that 1 < a < n and check gcd(a,n) = 1.


If TRUE, calculate an-1 mod n



If n is prime, the result should be 1



Otherwise, n is composite.

However, we may still get 1 even though n is not prime. So the test is NOT PERFECT.

Miller-Robin Test (adaptation of Euler) – 

A Yes-biased Monte Carlo algorithm with probability ¾ based on Theorem 1

To test for n, factor n – 1 = 2km, where m is odd and calculate X = am mod n


If X = n – 1, then n is prime, else X = X2 mod n


Go to previous step. Repeat k -1 times.

If no values of X = n -1, n is composite

Example.
n = 49



n – 1 = 48 = 24 * 3, so k =4 and m =3



Randomly pick a = 5



X = 53 mod 49 = 27, which is not n -1 (48) so continue



X = 272 = 56 mod 49 = 43



X = 432 = 512 mod 49 = 36



X = 362 = 524 mod 49 = 43



We have repeated k – 1 times (3) and all failed to equal n -1



49 is not prime




a46 ≡ 1 mod 47





a23 ≡ ±1 mod 47




-1 ≡ n – 1





(n – 1)2 ≡ 1 mod n



Test n = 15



42 ≡ 1 mod 15



42k ≡ 1 mod 47, for all k



Had 15 been prime, then 47 ≡ ±1 mod 15

Amplification Algorithm for a p-correct Monte-Carlo Algorithm

Basic Idea: Repeat the algorithm a lot (50 times)


Each time prime is returned



¾ confidence in its primality => 1 – (1/4)50


¼ fails -> to fail 50 times in a row => (1/4)50

This is still not perfect if random generator for a is bad.
Parallel lines 2 units apart





f(x)
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h





h > f(x) for all a ≤ x ≤ b





The area of the box = h(b-a) and the ratio k/n can be used to estimate the area the integral of f(x) from a to b, where k is the number of random points generated inside the box and n is the total number of points.
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