COT 5405: Design and Analysis of Algorithms
 Instructor Mr. Arup Guha Fall 2003

Lecture 20 November 13, 2003

Note Taker: Guy Bedette

Branch-and-Bound:

Branch-and-Bound is a technique added to Min-Max search trees to improve performance. It works very much like a depth first search. The idea is that if you try a better node earlier you can more effective prune branches.

The idea is something that humans naturally use but how does a computer decide what is a better move? The computer needs a heuristic to order the moves. The heuristic needs to be fast. If the heuristic is slow it defeats the purpose it is used for.

[image: image1.wmf]Current Game Position

Possible Moves

(1)

60

50

70

(2)

(3)

Pruned

1

62

In the figure above we can eliminate move (3) and in evaluating move (1) can eliminate all but one branch. The trick is to find the heuristic which finds the best possible solution using the first move.

In this next example we wish to find the permutation of employees that takes the minimal time to perform a set of tasks.

	
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

If we assign task “1” to employee “A” the heuristic is what is the minimum (lower bound) of time for the remaining tasks that don’t belong to “A”. The heuristic is NOT assigning tasks to the remaining employees it is just looking for what is the lower bound of time. In the case of assigning task “1” to employee “A” the lower bound of time is 60.

	A1 = 60

	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

Now do the same first assigning task “2” to employee “A”, then task “3”, then “4” and applying the same heuristic:

	A2 = 58
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

	A3 = 65
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

	A4 = 78
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

From this we have produced the following tree:

[image: image2.wmf]A1

A2

A3

A4

60

58

65

78

For now A2 is the best. Possible moves from A2 are B1, B3, and B4. Using the same heuristic find the cost for these moves. (Heuristic for lower levels ass cost of previous node).

	B1 = 68
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

	B3 = 59
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

	B4 = 64
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

The best move here is B3, using this knowledge expand out the C1 and C4 moves:

	C1 = 64
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

	C4 = 65
	Task

	
	1
	2
	3
	4

	Employee
	A
	11
	12
	18
	40

	
	B
	14
	15
	13
	22

	
	C
	11
	17
	19
	23

	
	D
	17
	14
	20
	28

In each of these cases there is only one choice for D. The following tree shows the above moves expanded out:

Notice that after expanding out the A2 – B3 moves the best move was C4 with a cost of 64. This is better that or as good as moves in higher levels (namely A3, A4, B1, and B4) so we can immediately prune those branches from consideration.

[image: image3.wmf]A1

A2

A3

A4

60

58

65

78

B1

B3

B4

C1

C4

68

59

64

65

64

Probabilistic Algorithms (Chapter 10)

1) May run differently on the same input instance. Example: quicksort picking a random partition element.

We want:

a. Reasonable certainty in the result produced. (regardless of the input there is a probability of success, i.e. there is no input that can screw it up all the time).

	Algorithm
	Input
	Deterministic % correct
	Probalistic % correct

	Sorting
	1234
	100
	80

	
	1243
	100
	70

	
	4321
	0 (error in algo)
	60

Used in case where no deterministic algorithm exists that completes in reasonable time.

2) Average Time Deterministic: Assume each input equally likely and average over these.

ss.

Expected Run Time Probabilistic: look at a single arbitrary input, what you expect for it to take.

Continued next lecture…

_1130847581.vsd
�

A1�

A2�

A3�

A4�

60�

58�

65�

78�

_1130848589.vsd
�

A1�

A2�

A3�

A4�

60�

58�

65�

78�

B1�

B3�

B4�

C1�

C4�

�

�

68�

59�

64�

65�

64�

_1130661336.vsd
�

60�

50�

70�

Current Game Position�

Possible Moves�

(1)�

(2)�

(3)�

Pruned�

�

�

1�

62�

�

�

