COT 5405 Design and Analysis of Algorithms
 Instructor Mr. Arup Guha Fall 2003

Lecture 16 October 24, 2003

Note-Takers: Prashanth, Naveen
0-1 Knapsack problem: -
 Consider a Shopping spree. You can choose any item among certain items placed. Each item has a certain weight and a certain value associated with it. The offer is you can choose any number of items whose total weight is less than or equal to the Weight of the cart (W), which is the limiting factor.

The conditions are:

 1.Each item is unique in terms of quantity.

 2.Each item must be taken in full/none i.e. no fractions are allowed.

 Our goal is to choose items such that the overall value of items is maximized.

 The above problem is an example of 0-1 knapsack problem.

 Definition of knapsack:

 Knapsack has a maximum weight of W.

 Each item has a maximum weight of wk and a value Vk.

 Goal: Find the subset of items with weight <= W that maximizes the value of the knapsack.

· Greedy Solution does not work for this problem.

· We are going to develop a Dynamic programming Solution.

Consider an example:

	 Item
	 Take/Don’t take
	 Weight
	 Value

	 I1
	 Y, N
	 2
	 10

	 I2
	 Y, N
	 5
	 17

	 :
	 :
	 :
	 :

	 :
	 :
	 :
	 :

	 In
	 Y,N
	 :
	 :

 The weight of the knapsack, W =20.

 Decision Tree.
 Empty

 Y-I1
 N-I1
 Value=10 Value=0
 W=18 W=20
 Y-I2
N-I2 Y-I1
N-I2
 Value=27 Value=10 Value=17 Value=0
 W=13
 W=18
W=15 W=20
 :
 :

 :

Max(Knapsack(I2-In, W-w1)+v1,Knapsack(I2-In,W)).

Here, in recursive way, we are doing the same thing.

Max(knapsack(I1-In-1, W-wn)+V, Knapsack(I-I(n-1),W).

Consider the below problem.

	 Item #
	 Wi
	 Vi

	 1
	 4
	 6

	 2
	 2
	 4

	 3
	 3
	 5

	 4
	 1
	 3

	 5
	 6
	 9

	 6
	 4
	 7

 The maximum weight of the Knapsack W is 10.

Generating solution using dynamic programming:

	Item ↓ V →
	 0
	 1
	 2
	 3
	 4
	 5
	 6
	 7
	 8
	 9
	 10

	 1
	 0
	 0
	 0
	 0
	 6
	 6
	 6
	 6
	 6
	 6
	 6

	 2
	 0
	 0
	 4
	 4
	 6
	 6
	 10
	 10
	 10
	 10
	 10

	 3
	 0
	 0
	 4
	 5
	 6
	 9
	 10
	 11
	 11
	 15
	 15

	 4
	 0
	 3
	 4
	 7
	 8
	 9
	 12
	 13
	 14
	 15
	 18

	 5
	 0
	 3
	 4
	 7
	 8
	 9
	 12
	 13
	 14
	 16
	 18

	 6
	 0
	 3
	 4
	 7
	 8
	 10
	 12
	 14
	 15
	 16
	 19

In the above, the first row indicates the value vi where W is the limit(So, in this case,10 is the limit) and the column indicates the item number.

Interpretation of table:

· Meaning of any cell, for e.g., Cell[3][7] i.e the element in row 3 and column 7 stands for the maximum value of a knapsack that contains a subset of {I1,I2,I3} with weight 7 or less.

of cells in the table = W*n.

Running time in this case is O(W*n) while in recursive case was O(2n).

Floyd Warshall’s Algorithm

· Gives the all pairs shortest paths in a graph

· Unlike Dijkstra’s algorithm, negative edge weights are considered but negative weight cycles are not.

 Consider two vertices ‘i’ and ‘j’. If there exists an edge between them, then initialize it to the weight given. If there is no edge, it is considered as (.

An example of a matrix for 6 vertices using this algorithm:

	Vertex
	0
	1
	2
	3
	4
	5

	0
	0
	(
	(
	(
	(
	(

	1
	
	0
	
	
	
	

	2
	(
	
	0
	
	
	

	3
	
	(
	
	0
	
	

	4
	
	
	
	(
	0
	

	5
	
	
	(
	
	
	0

· Assuming that no self-loops exist, run ‘n’ iterations to improve the matrix for the shortest paths between the vertices.

· Initially the matrix holds the shortest paths when there are no intermediate vertices.

· For the 0th iteration, vertex ‘0’ is considered as the intermediate vertex.

· Cell [i][j] holds the value of the shortest distance between the vertices ‘i’ and ‘j’.

For example initially say cell [i][j] holds value 30, which is the shortest value between them with no intermediate vertices, as the number of iteration increase, the value in the cell changes as and when lesser values are encountered due to intermediate vertices. Assume that ‘k’ is one intermediate vertex between ‘i’ and ‘j’ and if cell [i][k] = 12 and cell [k][j] = 15 then the value of cell [i][j] changes to 27.

On nth iteration, consider ‘n’ as the intermediate vertex between ‘i’ and ‘j’.

Shortest path from ‘i’ to ‘j’ using intermediate vertices {0,1,2,3,4…n-1}

 ‘i’ ‘k’ ‘j’

