Binomial Coefficients:

Recursively, we can compute binomial coefficients as follows:

C(n,0) = C(n,n) = 1

C(n,k) = C(n-1,k-1)+C(n-1,k)

This leads to a relatively easy piece of recursive code:

int bincoeff(int n, int k) {

     if (k == 0 || n == k)

           return 1;

     else

           return bincoeff(n-1,k-1)+bincoeff(n-1,k);

}

This will work, though quite slowly, for non-negative integer inputs n and k with k ( n.

The problem here with efficiency is the same as with Fibonacci. Many recursive calls to the function get recomputed many times. It would be much better to simply look these up. We can do this by creating an array that will store each value returned by all the different recursive calls. This way, when we need to know what C(n-1, k-1) is, we can simply look this information up in an array. 

There are two key pieces necessary to take a recursive solution to a problem and translate it into a dynamic programming problem:

1) Convert the base cases or terminating cases into initializing the table structure that will hold the "answers" to potential recursive calls.

2) Determine IN WHAT ORDER you will fill up your table so that you never attempt to access an uninitialized element of the table.

Keep in mind, in order for this to work, you MUST define the meaning of what each element of the table/array holds. In our case, we will define a two-dimensional array coeff, where coeff[i][j] will store the value C(i, j). This issue becomes even more important with more difficult dynamic programming solutions, such as the change problem.

Now, onto the dynamic programming implementation of finding C(n,k):

int bincoeff(int n, int k) {

     int** coeff = new int[n+1][n+1];

     for (int i=0; i<n+1; i++) {

          coeff[i][0] = 1;

          coeff[i][i] = 1;

     }

     for (int i=1; i<n+1; i++)

          for(int j=1; j<i; j++)

               coeff[i][j] = coeff[i-1][j-1]+coeff[i-1][j];

     return coeff[n][k];

}

There are certainly a number of ways to optimize this. At any given time, no more than two of the rows of the table are needed. Furthermore, based on the value of k, we could stop computing the values in a row once we got to the kth element in that row. Time wise, the running time of the algorithm above is O(n2), where n is the value of the first parameter. With the improvements suggested above, the amount space used could be reduced to O(k) and the time could be improved to O(nk). The time is only an improvement for small values of k.

The Change Problem

"The Change Store" was an old SNL skit (a pretty dumb one...) where they would say things like, "You need change for a 20? We'll give you two tens, or a ten and two fives, or four fives, etc."

If you are a dorky minded CS 2 student, you might ask yourself (after you ask yourself why those writers get paid so much for writing the crap that they do), "Given a certain amount of money, how many different ways are there to make change for that amount of money?"

Let us simplify the problem as follows:

Given a positive integer n, how many ways can we make change for n cents using pennies, nickels, dimes and quarters?

Recursively, we could break down the problem as follows:

To make change for n cents we could:

1) Give the customer a quarter. Then we have to make change for n-25 cents

2) Give the customer a dime. Then we have to make change for n-10 cents

3) Give the customer a nickel. Then we have to make change for n-5 cents

4) Give the customer a penny. Then we have to make change for n-1 cents.

If we let T(n) = number of ways to make change for n cents, we get the formula

T(n) = T(n-25)+T(n-10)+T(n-5)+T(n-1)

Is there anything wrong with this?

If you plug in the initial condition T(1) = 1, T(0)=1, T(n)=0 if n<0, you'll find that the values this formula produces are incorrect. (In particular, for this recurrence relation T(6)=3, but in actuality, we want T(6)=2.)

So this can not be right. What is wrong with our logic? In particular, it can been seen that this formula is an OVERESTIMATE of the actual value. Specifically, this counts certain combinations multiple times. In the above example, the one penny, one nickel combination is counted twice. Why is this the case?

The problem is that we are counting all combinations of coins that can be given out where ORDER matters. (We are counting giving a penny then a nickel separately from giving a nickel and then a penny.)

We have to find a way to NOT do this. One way to do this is IMPOSE an order on the way the coins are given. We could do this by saying that coins must be given from most value to least value. Thus, if you "gave" a nickel, afterwards, you would only be allowed to give nickels and pennies.

Using this idea, we need to adjust the format of our recursive computation:

To make change for n cents using the largest coin d, we could

1)If d is 25, give out a quarter and make change for n-25 cents using the largest coin as a quarter.

2)If d is 10, give out a dime and make change for n-10 cents using the largest coin as a dime.

3)If d is 5, give out a nickel and make change for n-5 cents using the largest coin as a nickel.

4)If d is 1, we can simply return 1 since if you are only allowed to give pennies, you can only make change in one way.

Although this seems quite a bit more complex than before, the code itself isn't so long. Let's take a look at it:

public static int makeChange(int n, int d) {

    if (n < 0)

        return 0;

    else if (n==0)

        return 1;

    else  {

        int sum = 0;

        switch (d)
{

            case 25: sum+=makeChange(n-25,25);


   case 10: sum+=makeChange(n-10,10);

            case 5: sum += makeChange(n-5,5);

            case 1: sum++;

         }

         return sum;

     }

}

There's a whole bunch of stuff going on here, but one of the things you'll notice is that the larger n gets, the slower and slower this will run, or maybe your computer will run out of stack space.  Further analysis will show that many, many method calls get repeated in the course of a single initial method call.

In dynamic programming, we want to AVOID these reoccuring calls. To do this, rather than making those three recursive calls above, we could store the values of each of those in a two dimensional array. 

Our array could look like this

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	5
	1
	1
	1
	1
	2
	2
	2
	2
	2
	3
	3
	3
	3
	3
	4

	10
	1
	1
	1
	1
	2
	2
	2
	2
	2
	4
	4
	4
	4
	4
	6

	25
	1
	1
	1
	1
	2
	2
	2
	2
	2
	4
	4
	4
	4
	4
	6


Essentially, each row label stands for the number of cents we are making change for and each column label stands for the largest coin value allowed to make change.

Now, let us try to write some code that would emulate building this table by hand, from left to right.

  public static int makeChangedyn(int n, int d) {

      // Take care of simple cases.

      if (n < 0)

          return 0;

      else if ((n>=0) && (n < 5))

          return 1;

       // Build table here.

       else {

            int[] denominations = {1, 5, 10, 25};

            int[][] table = new int[4][n+1];

            // Initialize table

            for (int i=0; i<n+1;i++)

                table[0][i] = 1;

            for (int i=0; i<5; i++) {

                table[1][i] = 1;

                table[2][i] = 1;

                table[3][i] = 1;

            }

            for (int i=5;i<n+1;i++) {

                table[1][i] = 0;

                table[2][i] = 0;

                table[3][i] = 0;

            }

           // Fill in table, row by row. 

           for (int i=1; i<4; i++) {

                for (int j=5; j<n+1; j++) {

                    for (int k=0; k<=i; k++) {

                        if ( j >= denominations[k])

                             table[i][j] += table[k][j - denominations[k]];

                    } 

                }

            }        

            return table[lookup(d)][n]; 

       }

  }

