Design & Analysis of Algorithms

COT 5405

Instructor: Dr. Arup Guha
Anurag Sharma, Sagar Karandikar

Lecture 13     (10/9/03)

Dijkstra’s Shortest Path Algorithm

The shortest Path algorithm is used to find the shortest path of all the nodes in a graph from a given node (also called as source node).

The shortest path problem in a Graph is stated as:

Given a weighted graph, with V vertices(nodes), E edges and a real-valued function f : E -> R, and given further two elements n, n' of N, find a path P from n to n', so that 

∑   f(p)

              pЄP

is minimal among all paths connecting n to n'. 

Consider a directed graph 

G = (V, E) 

Where,

V= {set of Vertices of Graph G}

E= {set of Edges of Graph G}

Each edge in the graph G has a defined weight.  The function w (n, n’) determines the weight of an edge (n, n’ here) moving from vertex n to vertex n’. We can think of considering the weight of the edge as the distance and hence the algorithm simplifies to finding the shortest distance from the given source node to all other nodes in the graph G.
The greedy algorithm for finding the shortest paths in a graph is also called as Dijkstra’s Algorithm.

The algorithm partitions the vertices in graph in 2 set of nodes i.e. S & C where V = S U C

S – {Set of vertices whose minimum distance is already known} 

C – {Set of vertices present in the graph but whose distance is not known}

The algorithm chooses a new node with the shortest distance from the source in each step and that node is added to set S.

We maintain an array to store the distance of each node after addition of each node to set S.

(note index values if any start from 1 and not from 0)

Below specified is the Dijkstra’s Algorithm for finding the shortest path from node S to all other nodes in the graph.

1. Start

2. Initialize array D {size equals total number of Vertices in the graph}.

3. Initialize set C {all the vertices except the start vertices}.

4. Initialize set S {start node}.

5. Enter the initial distances in array D.

6. Repeat steps 7, 8 & 9 for all vertices in C.

7. Find and vertex from set C such that the distance to it is minimum from the source node depending upon the vertices already added to set S

8. Add that vertex to set S from set C which has the shortest distance from start vertex than any other vertices in set C.

9. Update the array D (The Distance from X to Y either reduces or remains same after adding a new node Z).

10. Return the array D.

Thus we can see that the algorithm computes the shortest distance to each other node in each step and hence when all the nodes are processed we, get the shortest path from the source vertex to all other vertices in the graph.

Let us look at an example.

Consider a graph as shown in the figure


[image: image1]
Let us perform the given algorithm on the graph above:

The Adjacency matrix will be:

	
	A
	B
	C
	D
	E

	A
	0
	50
	30
	100
	10

	B
	∞
	∞
	∞
	∞
	∞

	C
	∞
	5
	∞
	∞
	∞

	D
	∞
	20
	50
	∞
	∞

	E
	∞
	30
	60
	10
	∞


Consider the start vertex as A

1. Vertex A has its neighbors as B, C, D, and E.

2. It will select the neighbor with the shortest distance which will be E.

3. The value of array D is as shown

	
	A
	B
	C
	D
	E

	A
	0
	50
	30
	100
	10

	E
	0
	50
	30
	20
	10


4. As soon as E is added to S we calculate the distance of all the vertices from A and store in array D.

5. The nearest vertex is again chosen from C which is now vertex D

6. and the algorithm procceds in similar fashion till all the nodes are added to set S

This table below shows the value of array D at each step, when a new vertex is added to set S from set C

	
	A
	B
	C
	D
	E

	A
	0
	50
	30
	100
	10

	E
	0
	50
	30
	20
	10

	D
	0
	40
	30
	20
	10

	C
	0
	35
	30
	20
	10

	B
	0
	35
	30
	20
	10


Proof of Dijkstra’s Algorithm

Let’s assume that the algorithm is incorrect. Which means :

There is a point in time where we added a vertex into S incorrectly.

When    S = S U {u}     was executed                           (Let ‘u’ be first such vertex. Right before

                                                                                         this step was executed, all vertices in S

              d[u]  ≠    ((S,u)                                                  had accurate estimates)

                                                                       S
                                     

                                                                                                               . y

                                                                                                               .

                                                                                   xx                        .

                                                                                                                . u
Let ‘x’ be last vertex added to S before ‘u’.

After this we calculate estimates from ‘x’ to all vertices left.           

We pick ‘u’ because that’s shortest.

If there is a shorter path then it can be from same vertex already in S to same vertex outside S and then to ‘u’.

But that is a contradiction of our assumption.

Since :

                    d[y] + (non-negative)  ≥  d[u]                    {Where ‘y’ is a vertex outside S}

So the algorithm is correct.

Hence Proved.
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