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Introduction to use of Greedy, Divide & Conquer , Dynamic Programming techniques to various algorithms:

Example #1:  Fibonacci problem/fibonacci series:

 The series starts with F(0) =0,F(1)=1, and then proceeds with F(n)=F(n-1)+F(n-2) 

For all n>=2. so, the series goes like this 0,1,1,2,3,5,8,11,19,……

The formula says : Add up the previous two terms two in the series to obtain the last term in the series.

The algorithm for this problem using recursion and divide and conquer technique can be given as follows:

Algorithm:

Fib(n) {

      If(n<2) 

      Return n;

      Else

      Return Fib(n-1)+Fib(n-2);

}

this algorithm calculates the value of F(n) by recursively calling the Fib(n-1) and Fib(n-2) 

this algorithm is good for small values of ‘n’ ,but as the size of ‘n’ grows the complexity of the algorithm goes in terms of time and also memory.

Lets first calculate the complexity of this algorithm in terms of time.

Let T(n) be the time taken by this algorithm for calculating Fib(n).

So, it can be given as :

  T(n)= T(n-1) + T(n-2);  ------   I

 T(0)=1;T(1)=1;(assume them as constants)

Since this time is calculated by recursive calls to the same function the complexity of T(n) is exponential. So, lets Guess that 

T(n)=(n   --------  II(exponential function for a constant ( ) 

And see if it works, which means that there will be  a valid solution for the equation I if this is a good guess.

So, substituting II in I w e get ,

        (n = (n-1 + (n-2
=>   (n - (n-1 - (n-2 = 0

=> (n-2 ((2 - (- 1) =0

we know that  (n-2 cannot be 0, so it proves that ((2 - (- 1) =0

so, it gives the roots for   ( as ,

( = (1((5)/2

so, it should work out fine if you replace ‘(’ in II, but it doesn’t work 

since, T(1)= (1  = 1 ( (1((5)/2; so, this is  bad guess. Lets try a new guess with 

T(n)  = C1*(1+(5)/2 + C2*(1-(5)/2;

Note: this is not a bad guess since this can be proved as below

Substitute the roots we got for ( in I ,

((1((5)/2)n =  ((1((5)/2)n-1 + ((1((5)/2)n-2

 Now multiplying this with a constant say A1, A2 on both sides we get 

A1 ((1+(5)/2)n = A1* ((1+(5)/2)n-1 + A1 *((1+(5)/2)n-2

A2 ((1-(5)/2)n = A2* ((1-(5)/2)n-1 + A2 *((1-(5)/2)n-2

Both the above equations are true and so now adding the LHS and RHS of each of the equations , we get 

LHS==A1*((1+√5)/2)n +A2* ((1-√5)/2)n  =

A1*((1+√5)/2)n-1+A1*((1+√5)/2)n-2+A2*((1-√5)/2)n-1+A2*((1-√5)/2)n-2 ==RHS

Let LHS= new T(n)

And RHS= C1*((1+√5)/2)n-1 +C2* ((1+√5)/2)n-2    (By linear combination)

Therefore,    T(n)= 1+√5)/2)n-1 +C2* ((1+√5)/2)n-2  --------   III
Linear Combination : (definition)

A sum of the elements from some set with constant coefficients placed in front of each. For example, a linear combination of the vectors x, y, and z is given by 


where a, b, and c are constants. 

Now check the above deductions for T(0) and for T(1)

T(0)=1= C1* ((1+√5)/2)0 + C2* ((1-√5)/2)0    = C1 + C2         ----    A
T(1)=1= C1* ((1+√5)/2)1 + C2* ((1-√5)/2)1    = C1 *  ((1+√5)/2)+ C2 * ((1-√5)/2)   ----    B

Solving the above equations A & B for  C1 , C2 we get 

C1 = (1/√5)* ((1+√5)/2)  ;    C2  = (1/√5)* ((1-√5)/2)  ;    

Substituting these values in III we get 

T(n) = (1/√5)* ((1+√5)/2)n+1  +  (1/√5)* ((1-√5)/2)n+1
The order of the above equation is O(((1+√5)/2)n)

So, the time of this recursive algorithm is exponential and so, it takes a lone time for large ‘n’.

The reason for the above algorithm to take such long times is due to the redundancy in the algorithm.it can explained as follows:

Eg:

                                                              F(5)

                                                         
[image: image1]
                                                    F(4)                   F(3) (have to compute F(3) again though     

                                                                                    it is once computed down in the tree)
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                                     2= F(3)              F(2)(have to compute F(2) again though it is once        

                                                                             computed down in the tree)
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                               1= F(2)          F(1)=1
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                               F(1)=1        F(0) =0

Since it cant store the previously computed values , it has redo a lot of work. So, it would be easy and fast to load the previously computed values and use them later when needed.

So, here comes into picture the dynamic programming techinque. This technique is to store all the previously computed vales in an array and look up for those values when needed and use them for the computation, which will reduce the overload of computing those values again.

The array can be:

 0    1   2    3    4    5…………
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algorithm using dynamic programming:

Fib(n)  {

Int vals[n+1]; //array to store the values of the series from 0 to n;

Vals[0]=0;

Vals[1]=1;

For(int i=2; i<=n;i++)           // the order of this for stmt is O(n)

 Vals[n]=vals[n-1]+vals[n-2];

Return vals[n];

}

though this algorithm  seems quite similar to the previous one, it uses an unit function to look up for the vals[n-1] and vals[n-2];

for calculating the number of digits in Fib(n):

if n=100, Fib(100)≈ (1.61)100
 the above value can be expressed as  some constant power 10,(10some contant )

let log10 1.61= X

· 10X = 1.61 

· (1.61)100 = (10X)100 =10100X         

therefore the # digits in the resulting value is 100X= 100 log10 1.61

for ‘n’ , the value is “n log10 1.61”

so, the total time required for this algorithm will be O(n)*O(n).

so., it reduces the exponential order of time required by the previous algorithm to the order of O(n2)

But this algorithm takes a lot of memory for storing all the values in the series. This memory requirement can be reduced by just storing the previous two terms required for computing the last term of the series and erasing all the other values. The algorithm for that is as follows:

algorithm for saving memory:

Fib(n)  {

 Valone=0;

Valtwo=1;

For(int i=2; i<=n;i++) {

Newval=valone+valtwo;

Valone=valtwo;

Valtwo=newval;

}

return newval;

}

just storing the value you need avoids the hardship of looking up for that value in the array and also saves a lot of memory. The time complexity of this algorithm is O(n2)

​​___________________ 
Modular Exponentiation

y

Given x, y, n € integers,   Compute x   mod n

This is hard to do with very large numbers

Dynamic Approach


ModExp(int x, int y, int n){



int answer =1;



for( i=0; i<y; i++ )




answer = (answer*x) % n;        //use mod operator throughout 

return answer;
//to  keep numbers from //getting too big, never > (n^2)


}

Note that the common integer datatype can only represent numbers up to (2^31) – 1

This means our algorithm will work for all values ≤ (2^15)

Analysis

Assume multiplication takes constant time:   O( y ) is running time  

Divide and Conquer Approach

 
((x ^ (y/2)) ^2)     //works for all even y


ModExp(int x, int y, iny n){



int sqroot;



if (y ==0) return n;



if (y ==1) return x % n;



if (y%2 == 0){                   //y is even




sqroot = ModExp(x, y/2, n);            //return ModExp(sqroot, 2, n) 




return (sqroot * sqroot) % n;           // would lead to an infinite loop



}



if (y%2 == 1){

     //y is odd




sqroot =ModExp(x, (y-1)/2, n);




return (sqroot * sqroot * x) % n;



}


}

Analysis

T(n) = running time for ModExp(base, n, mod)

T(n)     = T(n/2) + O(1)   
    //O(1) is spent doing the mult and % after recursive call


T(n/2)  = T(n/4) + O(1) 

T(n/4)  = T(n/8) + O(1) 

…

T(2)  = T(1) + O(1) 

This gives us O(logn) statements, and as we cancel terms out we are left with

T(n) = T(1) + O(logn)*O(1)                         

        = O(1) + O(logn)

        = O(logn)                        //which corresponds to the number of bits in the exponent

If we chose to use    … return(ModEx(x, (y-1)/2, n) * ModExp(x, (y-1)/2, n) * n) % n;

We would be making two calls giving us:

T(n) = 2T(n/2) + O(1) which simplifies to O(n), which is the running time of the Dynamic approach.  We can see redundancy, similar to that of recursive fibanacci. 

