Date: 09/18/2003

Class Notes Set # 7

Note-takers: {arslan,smkhan}@cs.ucf.edu

NP Completeness
To understand NP completeness we’ll first discuss the concept of reduction.

The concept of reduction uses the known solution of the first problem to find the solution of the second problem that is to be determined.
Linear Reduction
A ≤l B
(A linearly reduces to B)

where A and B are the problems and the above statement means:

If there exists a solution for problem B that works in O(t(n))

Then there exists a solution for problem A that also works in O(t(n))

If A ≤l B and B ≤l A, then A and B are Linearly Equivalent.
Example:

We show the use of linear reduction for finding a solution to the Selection Problem. Here the selection problem is the selection of any arbitrary smallest element from a given set of elements. We use Bubble Sort as the problem to which we want to linearly reduce selection problem, as the selection problem can be solved using the sort routine implicitly.
We want to use routines similar to:

selection(int [] values, int k);

//returns the Kth smallest value in the array values

sort(int [] values)

//sorts values

The complete implementation of the code is given for this in the source code handout provided in the classroom by the instructor. The code shows that the selection problem as the black-box to solve the selection problem. The selection routine doesn’t care about the internal details of blackboxsort().
The complexity of the selection() can be given as:
O(t(n)) – for balckboxsort()
+ O(1)

O (t(n)) – for selection()

where t(n) is any function of n: the number of elements to be sorted.

Hence we can write:
selection ≤l sort

Polynomial Reduction
A ≤PT B

*(polynomial)

If there exists a solution to problem B that runs in O(1) time,

Then it can be proven that there exists a solution to problem A that runs in polynomial time.

Assume we have got a solution to B. Prove that you can solve A using a polynomial number of steps plus a polynomial number of calls to the black-box that solves B.

For instance, out of nk calls, nk-1 were calls to the B black-box.
Lets say B can be solved in

O(nc)

Then for A we have running time in

nc. nk-1 + nk
NOTE: It is suggested that the students should go through page 442 of the textbook for reading about the accuracy of reduction & running time.

Example:

sort ≤PT selection

The given handout contains another routine polyreducsort(). This routine is used for:
A solution to the sorting problem using solution to the selection problem, using a polynomial sort.
We can see the running time for this routine to be complemented by:

O(n) – for loop

O(n) – number of calls to the selection()

O(1)

Difference between both forms of reductions is further explained as:

In Linear Reduction number of calls to the black-box should be constant.
In Polynomial Reduction number of calls to the black-box should be polynomial in n, the input size.

NOTE: In reduction A and B are different problems. Not different algorithm of the same problem.
NP Complete

1- For X to be NP complete it has to satisfy the following:

2- X Є NP

3- Y ≤PT X, for every problem Y Є NP
NOTE: Once you can show that a single problem is NP complete. It’s easier to show that NP completeness for other problems. Assuming we have an NP complete problem Y, to show that another problem X is NP complete all we need to show is that Y is polynomial reducible to X:

Any NP-problem ≤PT Y ≤PT X , where Y Є NP-complete
Refer to Cook’s theorem at pg-451 in the text book to find how to develop the first NP-complete problem.

Interesting Point: If a single NP-complete problem can be shown to be polynomial time. Then every NP problem becomes polynomial time because by definition every NP problem is polynomial reducible to the NP-complete problem!

-> If there exists X such that X is a NP-complete problem and has a polynomial time solution then it follows that every NP problem can be run in polynomial time.
