Design & Analysis of Algorithms

COT 5405

Instructor: Dr. Arup Guha

Note-Takers: Zeeshan Furqan, Amit Kejriwal
Date: 09/16/03

Three different levels:
1) High level description (e.g. of
[image: image1.wmf]}

0

{

2

n

: steps labeled 1 – u, provides a general

 outline)

2) Detailed but not formal / intermediate (e.g. pseudo code with some details)

3) Formal (specifying input alphabets, tape alphabets, states e.t.c., deals with implementation)

Subset sum problem: is there a subset that adds up to sum

A solution can be given (if there is one) by enumerating all possible subsets.

Non decidable Problems: These are the problems that have no solution.
1) Halting Problem (input TM M, input X for M)

2) Acceptance Problem (input TM M, input X for M)

The goal of halting problem is to decide whether M halts when run on M. The goal of Acceptance problem is to decide whether M accepts X.

Both the problems are Turing recognizable.
Non Deterministic Turing Machine NDTM:

Class NP: set of problems that can be solved on a NDTM in polynomial time.

They can also be defined as the class who verify the acceptance of the machine with certificate in polynomial time.

Class P: problems that can be solved in polynomial time by a standard Turing machine.
Halting Problem:

Given a TM M and a string w, is w(L(M)?

In other words is input string w which is feed to the Turing machine, M, is recognizable by the machine or not?

This problem is unsolvable problem and known as halting problem.

The halting problem can be proved as follows:

A = {(M, w) M is a TM and M accepts w}

Proof:

We will prove halting problem using the principle of contradiction, Assume A is decidable. Suppose that H is a decider for A.

On input (M,w) H halts and accepts if M accepts w. H halts and rejects if M fails to accept w.

H((M,w))= accepts if M accepts w

 rejects if M does not accept w

Let’s construct a Turing machine D with H as a subroutine. D calls H to determine what M does when the input to M is its own description. Once D has determined this information it does the opposite. The following is the description of D:

D= “on Input M”

1. Run H on input (M,(M)).

2. Output the opposite of what H outputs

D(M)= accepts, if M does not accept (M)

rejects, if M accepts (M)

And if D is run with its own descriptor (D) as input then

D(D)= accepts, if D does not accept (D)

rejects, if D accepts (D)

No matter what D does, it is forced to do the opposite, thus neither TM D nor TM H can exist.

1. H accepts (M,w) exactly when M accepts w.

2. D rejects (M) exactly when M accepts (M)

3. D rejects (D) exactly when D accepts (D)

Diagonalization proof:

In the tables shown below all the TM’s are listed down the row M1, M2… and all their description across the columns, (M1), (M2)…. The entries tell whether the machine in a given row accepts the input in a given column. The entry is accept if the machine accepts the input but is blank if it rejects or loops on that input.

	
	(M1)
	(M2)
	(M3)
	(M4)
	.
	.
	.

	M1
	accept
	
	accept
	
	
	
	

	M2
	accept
	accept
	accept
	accept
	
	
	

	M3
	
	
	
	
	.
	.
	.

	M4
	accept
	accept
	
	
	
	
	

	.
	
	.
	
	
	
	
	

	.
	
	.
	
	
	
	
	

	.
	
	.
	
	
	
	
	

Entry i,j is accept if Mi accepts (Mj)
In the following table the entries are result of running H on inputs corresponding to the above tables. So if M3 does not accept input (M2), the entry for row (M3) and column (M2) is reject because H rejects input (M3, (M2)).

	
	M1
	M2
	M3
	M4
	.
	.
	.

	M1
	accept
	reject
	accept
	reject
	
	
	

	M2
	accept
	accept
	accept
	accept
	
	
	

	M3
	reject
	reject
	reject
	reject
	.
	.
	.

	M4
	accept
	accept
	reject
	reject
	
	
	

	.
	
	.
	
	
	
	
	

	.
	
	.
	
	
	
	
	

	.
	
	.
	
	
	
	
	

Entry i,j is the value of H on input (Mi(Mj))

The table below is obtained by adding D to the above table. By our assumptions H and D both are TM. Therefore it much occur on the list M1, M2,… of all TMs. D computes the opposite of diagonal entries. The contradiction occurs at the point of ?, where the entry must be opposite of itself.

	
	M1
	M2
	M3
	M4
	.
	.
	.
	D
	.
	.
	.

	M1
	accept
	reject
	accept
	reject
	
	
	
	accept
	.
	.
	.

	M2
	accept
	accept
	accept
	accept
	
	
	
	accept
	
	
	

	M3
	reject
	reject
	reject
	reject
	.
	.
	.
	reject
	
	
	

	M4
	accept
	accept
	reject
	reject
	
	
	
	accept
	
	
	

	.
	
	.
	
	
	
	
	
	
	
	
	

	.
	
	.
	
	
	
	
	
	
	
	
	

	.
	
	.
	
	
	
	
	
	
	
	
	

	D
	reject
	reject
	accept
	accept
	
	
	
	?
	
	
	

	.
	
	
	
	
	
	
	
	
	
	
	

	.
	
	
	
	
	
	
	
	
	
	
	

	.
	
	
	
	
	
	
	
	
	
	
	

Contradiction occurs at ?

The above proof can be related to the program distributed in the class. A is the program and function “machined” symbolizes the “D” TM in the proof shown above. Functions “machine1” and “machine2” symbolize M1 and M2 respectively. Function machined returns false if halting function returns true and returns true if halting function returns false. Function “halting” is equivalent to the decider “H”.

_1124892398.unknown

