COT 5405: Design and Analysis of Algorithms
 Instructor Mr. Arup Guha Fall 2003 Lecture 6 ~ September 11, 2003

To show that a standard Turing machine can recognize the same language as an arbitrary non-deterministic Turing machine.

Proof:

A typical Turing machine is represented here where there are n possible ways to go to the next state from a particular state on a certain input.

[image: image1]
Let the non-deterministic Turing machine be N. We will simulate N on a multi tape Turing machine, M.
Let M be a 3 tape Turing machine with the following tapes
1. Input tape: It holds Input and it is a read-only tape.

2. Simulation tape: It is used to carry out computation path.

3. Counter tape: It keeps track of the computation paths that have been considered.

It is entirely possible that certain paths in a non-deterministic Turing machine do not halt. Such paths must be avoided. A DFS (Depth First search) may lead to one such path.
Therefore we employ BFS (Breadth First Search) technique to find out the computation path that finally leads the Turing machine to an accept state. Essentially we begin a cycle of all possible permutations of paths.
For example, starting with zero, we go to the start state apply zero transitions, and see if we are in an accept state (with essentially no moves). If not, we would try all possible transitions using just one rule, essentially moving us to all of the states that could be reached through a single transition from the start state. If an accept state is reached, accept; otherwise continue. Try all possible sets of two transitions from the start state, and see if we reach an accept state. And so on.

Formally this is described as:

Assume that maximum number of transitions on any state for a certain input in the non-deterministic Turing machine is b.

The Turing machine runs in ‘Lexicographical order’ in the following manner

For Transition 1 (for each of the transition at the state at consideration on a certain input).

1, 2, 3, 4… b

For Transition 2

(1, 1), (1, 2), (1, 3)… (1, b)

(2, 1), (2, 2)…….….

Similarly

(b, 1), (b, 2) …

Similarly the path is computed for more transitions. Whenever any computation path is traced that leads the Turing machine to an accept state, the machine halts. That path gives the equivalent deterministic transition.
Since any language that is recognized by a multi tape Turing machine is also recognizable by a standard Turing machine, an equivalent standard Turing machine can be constructed.

Counter tape keeps track of the next transition to take place.

Simulation tape is used for running the transition.

Thus a deterministic Turing machine can be created from a non-deterministic Turing machine that recognizes the same language.

Enumerator (For a language L)

Definition:

It is a special instance of the standard Turing machine and has the following properties.

1. It has a blank tape at start.

2. It prints out strings in a language L to the tape.

3. It does not pursue any particular order for printing out the strings to tape.

4. Strings may get repeated

5. Eventually an enumerator prints out all the strings in a language L on the tape.

e.g. enumerator for language L such that

L = { 0n1n / n >= 1}

01#000111#01#0011#.............

Where # is the separator between 2 strings

Turing recognizable languages are recursively enumerable iff there exists a Turing machine that recognizes a language L and there exists an enumerator for L.

Proof:

First part:

To produce an enumeration E that enumerates the same language that a given Turing machine recognizes do the following:

1. Input to M all inputs of length 1 and run each for 1 transition.

2. If any of these are accepted by M, output them to the tape.

3. Similarly carry out this process for inputs of length 2, 3….and run them for n transitions. Whichever are accepted by M, output them to the tape.

4. Now the tape is nothing but the Enumeration of L.

(Note: this particular machine will generate many duplicates of certain words, which is entirely acceptable by our definition of an enumerator. To avoid this, however, a larger Enumerator could be constructed which contains the enumerator described above within it and keeps 2 separate tapes listing the acceptable output of the internal enumerator and its own output. The larger machine checks to see if any output from the enumerator has been previously generated and only prints unique entries as its own output.)

Second part:

Given an enumerator E, construct a Turing machine that accepts the same language as enumerator produces:
1. Let M be the Turing machine that takes some input. Run the enumerator. Every time E gives out a string, M compares it with its original input. If they match, then M accepts it. If it does not, then it lets M run.

2. Thus how a Turing machine that recognizes same language as the enumerator is constructed.

Variations of standard Turing machine
Stay machine
Consider a different kind of Turing machine which can have a transition of the form

Q x Г= Q x Г x {L, R, S-Stay at the same place}

The variation of such standard Turing machine has the same power as the standard Turing machine.
Proof:

To prove this let us construct a standard Turing machine that accepts the exact same language as a stay machine S does.
Consider an arbitrary transition in S

(qi, a) -> (qj, b, S)

for each such transition which keeps the read-write head in the same position, create a

new state in standard Turing machine as qij such that following transitions are added to the original Turing machine

(qi, a) -> (qij, b, R)

(qij, Г) -> (qj, Г, L) this represents all the transitions from state qij. No matter what the input is it writes the same back to the tape goes to state qj and moves the head to left.

XXXqi a XXXX

XXXqj b XXXX in stay machine, where X is any arbitrary character in Г.

XXXqi a XXXX

XXX b qij XXXX

XXXqj b XXXX in equivalent standard Turing machine.

This requires a single rule to move right and a series of rules to move left, one for each possible character in Г.

Note: we need to chose a “more right, then move left” scheme to avoid “falling off” the front of the input tape if we’re at the start position.

e.g. consider (q1,0) -> (q3, 1, S) and Г ={b-blank,0,1,X}

which changes to

 (q1, 0) -> (q13, 1, R)

 (q13, b-blank) -> (q3, b-blank, L)

 (q13, X) -> (q3, X, L)

 (q13, 0) -> (q3, 0, L)

 (q13, 1) -> (q3, 1, L)

[image: image2]
If there are two Stay rules for state qi to state qj, now we will require two transitions to move from qi to qij and the same set of rules as before (one for each character in Г) to move to state qj.

[image: image3]
1->1, L

b->b, L

Bb indicates blank

0->0, L

0->1, R

q3

q13

q1

a->b,{L,R}

a->b,{L,R}

a->b,{L,R}

qi

qj

qk

ql

Fig. 6.1

X->X, L

Fig. 6.2

b indicates blank

q3

q13

q1

0->1, R

0->0, L

1/2->1/2, L

X->X, L

b->b, L

Fig. 6.3

1->2, R

